0000000001313423

AUTHOR

Hai I. Wang

showing 16 related works from this author

Reversible Photochemical Control of Doping Levels in Supported Graphene

2017

Controlling the type and density of charge carriers in graphene is vital for a wide range of applications of this material in electronics and optoelectronics. To date, chemical doping and electrostatic gating have served as the two most established means to manipulate the carrier density in graphene. Although highly effective, these two approaches require sophisticated graphene growth or complex device fabrication processes to achieve both the desired nature and the doping densities with generally limited dynamic tunability and spatial control. Here, we report a convenient and tunable optical approach to tune the steady-state carrier density and Fermi energy in graphene by photochemically c…

FabricationMaterials scienceTerahertz radiationPhysics::OpticsNanotechnology02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCondensed Matter::Materials Sciencesymbols.namesakelawPhysical and Theoretical Chemistrybusiness.industryGrapheneDopingFermi levelFermi energyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergysymbolsOptoelectronicsCharge carrier0210 nano-technologybusinessGraphene nanoribbonsThe Journal of Physical Chemistry C
researchProduct

Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors

2020

Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump–probe terahertz spectroscopy studies.

Supercapacitorbusiness.industryCharge carrier mobilityChemistryCommunicationGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciences7. Clean energyBiochemistryCatalysisEnergy storage0104 chemical sciencesTerahertz spectroscopy and technologyPower (physics)Colloid and Surface ChemistryOptoelectronicsbusinessGraphene nanoribbonsPower densityJournal of the American Chemical Society
researchProduct

Photoswitchable Micro-Supercapacitor Based on a Diarylethene-Graphene Composite Film

2017

Stimuli-responsive micro-supercapacitors (MSCs) controlled by external stimuli can enable a wide range of applications for future on-chip energy storage. Here, we report on a photoswitchable MSC based on a diarylethene-graphene composite film. The microdevice delivers an outstanding and reversible capacitance modulation of up to 20%, demonstrating a prototype photoswitchable MSC. Terahertz spectroscopy indicates that the photoswitching of the capacitance is enabled by the reversible tuning of interfacial charge injection into diarylethene molecular orbitals, as a consequence of charge transfer at the diarylethene-graphene interface upon light modulation.

Nanotechnology02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryCapacitanceCatalysisEnergy storagelaw.inventionchemistry.chemical_compoundColloid and Surface ChemistryDiarylethenelawMolecular orbitalSupercapacitorGraphenebusiness.industryGeneral ChemistryPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology0104 chemical sciencesTerahertz spectroscopy and technologychemistryModulationOptoelectronics0210 nano-technologybusinessJournal of the American Chemical Society
researchProduct

The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies

2017

The ultrafast dynamics and conductivity of photoexcited graphene can be explained using solely electronic effects.

Materials SciencePhysics::OpticsFOS: Physical sciences02 engineering and technology01 natural sciences7. Clean energylaw.inventionCondensed Matter::Materials ScienceElectrical resistivity and conductivitylawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Chemical Physics010306 general physicsComputer Science::DatabasesResearch ArticlesPhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsScatteringGraphenePhotoconductivitygraphene ultrafast carrier dynamicSciAdv r-articlesFermi energyPhysik (inkl. Astronomie)Condensed Matter Physics021001 nanoscience & nanotechnologyBoltzmann equation3. Good healthPhotoexcitationMultiple exciton generation0210 nano-technologyResearch ArticleScience Advances
researchProduct

Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning

2016

Understanding photophysical and electrocatalytic processes during photocatalysis in a powder suspension system is crucial for developing efficient solar energy conversion systems. We report a substantial enhancement by a factor of 3 in photocatalytic efficiency for the oxygen evolution reaction (OER) by adding trace amounts (∼0.05 wt %) of noble metals (Rh and Ru) to a 2 wt % cobalt oxide modified Ta3N5 photocatalyst particulate. The optimized system exhibited high quantum efficiencies (QEs) of up to 28 and 8.4% at 500 and 600 nm in 0.1 M Na2S2O8 at pH 14. By isolation of the electrochemical components to generate doped cobalt oxide electrodes, the electrocatalytic activity of cobalt oxide …

Materials scienceInorganic chemistryOxygen evolution02 engineering and technologyGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysis010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistryElectrocatalyst01 natural sciences7. Clean energyRedoxCatalysis0104 chemical sciencesCatalysisMetal[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry13. Climate actionvisual_artvisual_art.visual_art_mediumPhotocatalysis0210 nano-technologyCobalt oxideComputingMilieux_MISCELLANEOUS
researchProduct

Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.

2017

Recent advances in bottom-up synthesis of atomically defined graphene nanoribbons (GNRs) with various microstructures and properties have demonstrated their promise in electronic and optoelectronic devices. Here we synthesized N = 9 armchair graphene nanoribbons (9-AGNRs) with a low optical band gap of ∼1.0 eV and extended absorption into the infrared range by an efficient chemical vapor deposition process. Time-resolved terahertz spectroscopy was employed to characterize the photoconductivity in 9-AGNRs and revealed their high intrinsic charge-carrier mobility of approximately 350 cm2·V-1·s-1.

Band gapInfraredChemistryTerahertz radiationPhotoconductivityNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionPhysik (inkl. Astronomie)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyBiochemistryCatalysis0104 chemical sciencesTerahertz spectroscopy and technologyColloid and Surface Chemistry0210 nano-technologyAbsorption (electromagnetic radiation)Graphene nanoribbonsJournal of the American Chemical Society
researchProduct

Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons

2019

Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to 700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical bandgap of 1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By trac…

Materials scienceLetter530 PhysicsBand gapExcitonExciton binding energyBinding energyFOS: Physical sciencesPhysics::OpticsBioengineering02 engineering and technologyElectronNanomaterialsCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceExciton formationCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMechanical EngineeringGraphene nanoribbonsGeneral Chemistry530 Physik021001 nanoscience & nanotechnologyCondensed Matter PhysicsTHz spectroscopyOptoelectronicsCharge carrierExcitons0210 nano-technologybusinessUltrashort pulseGraphene nanoribbonsOptics (physics.optics)Physics - Optics
researchProduct

Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene

2019

Due to its outstanding electrical properties and chemical stability, graphene finds widespread use in various electrochemical applications. Although the presence of electrolytes strongly affects its electrical conductivity, the underlying mechanism has remained elusive. Here, we employ terahertz spectroscopy as a contact-free means to investigate the impact of ubiquitous cations (Li+, Na+, K+, and Ca2+) in aqueous solution on the electronic properties of SiO2-supported graphene. We find that, without applying any external potential, cations can shift the Fermi energy of initially hole-doped graphene by ∼200 meV up to the Dirac point, thus counteracting the initial substrate-induced hole dop…

Materials scienceLetterIonic bondingBioengineering02 engineering and technologyElectrolytedopingterahertz spectroscopy7. Clean energylaw.inventionsymbols.namesakeionic permeationlawElectrical resistivity and conductivityDopingGeneral Materials ScienceAqueous solutionGrapheneMechanical EngineeringDopingFermi levelFermi energyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsChemical physicsTerahertz spectroscopysymbolsGraphene0210 nano-technologyIonic permeation
researchProduct

Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase

2019

In this Communication, we report the first synthesis of structurally well-defined graphene nanoribbons (GNRs) functionalized with dendritic polymers. The resultant GNRs possess grafting ratios of 0.59-0.68 for the dendrons of different generations. Remarkably, the precise 3D branched conformation of the grafted dendrons affords the GNRs unprecedented 1D supramolecular self-assembly behavior in tetrahydrofuran (THF), yielding nanowires, helices and nanofibers depending on the dimension of the dendrons. The GNR superstructures in THF exhibit near-infrared absorption with maxima between 650 and 700 nm, yielding an optical bandgap of 1.2-1.3 eV. Ultrafast photoconductivity analyses unveil that …

530 PhysicsBand gapChemistry MultidisciplinaryExcitonSupramolecular chemistryNanowireNanotechnology010402 general chemistry01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistryPHOTOCONDUCTIVITYDENDRIMERSSuperstructureScience & TechnologyChemistryBOTTOM-UP SYNTHESISPhotoconductivityGeneral Chemistry530 Physik0104 chemical sciencesELECTRONIC-PROPERTIESChemistryEDGENanofiberPhysical SciencesGraphene nanoribbonsJournal of the American Chemical Society
researchProduct

Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons

2017

Bottom-up synthesis of low-bandgap graphene nanoribbons with various widths is of great importance for their applications in electronic and optoelectronic devices. Here we demonstrate a synthesis of N = 5 armchair graphene nanoribbons (5-AGNRs) and their lateral fusion into wider AGNRs, by a chemical vapor deposition method. The efficient formation of 10- and 15- AGNRs is revealed by a combination of different spectroscopic methods, including Raman and UV−visnear-infrared spectroscopy as well as by scanning tunneling microscopy. The degree of fusion and thus the optical and electronic properties of the resulting GNRs can be controlled by the annealing temperature, providing GNR films with o…

Annealing (metallurgy)Nanotechnology02 engineering and technologyChemical vapor deposition010402 general chemistryOptoelectronic devicesSpectroscopic analysisCatalysis; Chemistry (all); Biochemistry; Colloid and Surface Chemistry01 natural sciencesBiochemistryCatalysislaw.inventionsymbols.namesakeColloid and Surface ChemistrylawChemical vapor depositionSpectroscopyScanning tunneling microscopyElectronic propertiesFusionChemistryCommunicationChemistry (all)General Chemistry021001 nanoscience & nanotechnologyVapor deposition0104 chemical sciencesElectronic propertiessymbolsScanning tunneling microscopeGraphene0210 nano-technologyRaman spectroscopyGraphene nanoribbonsJournal of the American Chemical Society
researchProduct

Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges

2021

As a new family of semiconductors, graphene nanoribbons (GNRs), nanometer-wide strips of graphene, have appeared as promising candidates for next-generation nanoelectronics. Out-of-plane deformation of π-frames in GNRs brings further opportunities for optical and electronic property tuning. Here we demonstrate a novel fjord-edged GNR (FGNR) with a nonplanar geometry obtained by regioselective cyclodehydrogenation. Triphenanthro-fused teropyrene 1 and pentaphenanthro-fused quateropyrene 2 were synthesized as model compounds, and single-crystal X-ray analysis revealed their helically twisted conformations arising from the [5]helicene substructures. The structures and photophysical properties …

Terahertz radiationCrystallography X-RayBiochemistryCatalysislaw.inventionchemistry.chemical_compoundsymbols.namesakeColloid and Surface ChemistrylawSpectroscopy Fourier Transform InfraredPolycyclic CompoundsDensity Functional TheoryPyrenesbusiness.industryGrapheneCommunicationStereoisomerismGeneral ChemistryNanostructuresSemiconductorHelicenechemistryNanoelectronicsChemical physicssymbolsDensity functional theoryGraphitebusinessRaman spectroscopyGraphene nanoribbons
researchProduct

Hysteresis in graphene nanoribbon field-effect devices

2020

Hysteresis in the current response to a varying gate voltage is a common spurious effect in carbon-based field effect transistors. Here, we use electric transport measurements to probe the charge transport in networks of armchair graphene nanoribbons with a width of either 5 or 9 carbon atoms, synthesized in a bottom-up approach using chemical vapor deposition. Our systematic study on the hysteresis of such graphene nanoribbon transistors, in conjunction with temperature-dependent transport measurements shows that the hysteresis can be fully accounted for by trapping/detrapping carriers in the SiO2 layer. We extract the trap densities and depth, allowing us to identify shallow traps as the …

Materials scienceCondensed matter physicsGrapheneTransistorGeneral Physics and AstronomyField effect02 engineering and technologyTrappingChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionCondensed Matter::Materials ScienceHysteresislawField-effect transistorPhysical and Theoretical Chemistry0210 nano-technologyGraphene nanoribbonsPhysical Chemistry Chemical Physics
researchProduct

Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature

2018

Hot carrier cooling processes represent one of the major efficiency losses in solar energy conversion. Losses associated with cooling can in principle be circumvented if hot carrier extraction toward selective contacts is faster than hot carrier cooling in the absorber (in so-called hot carrier solar cells). Previous work has demonstrated the possibility of hot electron extraction in quantum dot (QD)-sensitized systems, in particular, at low temperatures. Here we demonstrate a room-temperature hot electron transfer (HET) with up to unity quantum efficiency in strongly coupled PbS quantum dot-sensitized mesoporous SnO2. We show that the HET efficiency is determined by a kinetic competition b…

Work (thermodynamics)Materials scienceBioengineeringHot electron transfer02 engineering and technologyPhoton energy010402 general chemistryKinetic energyterahertz spectroscopy01 natural sciencesquantum dot-sensitized solar cellsstrong couplingGeneral Materials ScienceSDG 7 - Affordable and Clean Energy/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybusiness.industryMechanical EngineeringPbS quantum dotsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesTerahertz spectroscopy and technologyQuantum dotOptoelectronicsQuantum efficiencyAstrophysics::Earth and Planetary Astrophysics0210 nano-technologybusinessMesoporous materialExcitationNano Letters
researchProduct

Interfacial Oxide Modulated unique Exchange Bias in CrPS4/Fe3GeTe2 van der Waals heterostructures

2023

Two-dimensional van der Waals heterostructures are an attractive platform for studying exchange bias due to their defect free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnet, has uncompensated magnetic spins in a single layer that make it an excellent candidate for studying exchange bias. In this study, we examined the exchange bias in CrPS4/Fe3GeTe2 van der Waals heterostructures using anomalous Hall measurements. Our results show that the exchange bias strength is robust for clean interfaces, with a hysteresis loop shift of about 55 mT at 5 K for few-layer Fe3GeTe2, which is larger than that obtained in most van der Waals AFM/FM heterostructures. However…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences
researchProduct

CCDC 2058017: Experimental Crystal Structure Determination

2021

Related Article: Xuelin Yao, Wenhao Zheng, Silvio Osella, Zijie Qiu, Shuai Fu, Dieter Schollmeyer, Beate Müller, David Beljonne, Mischa Bonn, Hai I. Wang, Klaus Müllen, Akimitsu Narita|2021|J.Am.Chem.Soc.|143|5654|doi:10.1021/jacs.1c01882

Space GroupCrystallographyCrystal System2811172023-hexa-tert-butyldibenzo[a1b1vw]dibenzo[56:78]pentapheno[2114131211-fghijklmn]heptaphene dichloromethane unknown solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058018: Experimental Crystal Structure Determination

2021

Related Article: Xuelin Yao, Wenhao Zheng, Silvio Osella, Zijie Qiu, Shuai Fu, Dieter Schollmeyer, Beate Müller, David Beljonne, Mischa Bonn, Hai I. Wang, Klaus Müllen, Akimitsu Narita|2021|J.Am.Chem.Soc.|143|5654|doi:10.1021/jacs.1c01882

Space GroupCrystallography4;4'13;13'16;16'-bis(25111417-penta-tert-butyl-1316-dihydro-4H-benzo[hi]benzo[56]tetraceno[21121110-qrstuva]naphtho[321-de]pentacene) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct