0000000001314805
AUTHOR
Loic Stefan
Applications of guanine quartets in nanotechnology and chemical biology
Guanine and related nucleobases such as guanosine, deoxyguanosine and isoguanosine are notable molecular tools for designing functional supramolecular assemblies. This popularity originates in their ability to self-assemble via a unique topological pluralism — as isolated nucleobases, discrete macrocyclic quartets and virtually infinite linear ribbons — that endows them with a considerable functional versatility. Many programmes have been launched to fine-tune the chemical properties of guanine derivatives, to make them usable under different experimental conditions, such as in organic or aqueous environments, and responsive to external stimuli, such as ionic strength, pH, light or temperat…
Deciphering the DNAzyme activity of multimeric quadruplexes: insights into their actual role in the telomerase activity evaluation assay.
The end of human telomeres is comprised of a long G-rich single-stranded DNA (known as 3'-overhang) able to adopt an unusual three-dimensional "beads-on-the-string" organization made of consecutively stacked G-quadruplex units (so-called quadruplex multimers). It has been widely demonstrated that, upon interaction with hemin, discrete quadruplexes acquire peroxidase-mimicking properties, oxidizing several organic probes in H(2)O(2)-rich conditions; this property, known as DNAzyme, has found tens of applications in the last two decades. However, little is known about the DNAzyme activity of multimeric quadruplexes; this is an important question to address, especially in light of recent repor…
Identifying three-way DNA junction-specific small-molecules
Three-way junction DNA (TWJ-DNA, also known as 3WJ-DNA) is an alternative secondary DNA structure comprised of three duplex-DNAs that converge towards a single point, termed the branch point. This point is characterized by unique geometrical properties that make its specific targeting by synthetic small-molecules possible. Such a targeting has already been demonstrated in the solid state but not thoroughly biophysically investigated in solution. Herein, a set of simple biophysical assays has been developed to identify TWJ-specific small-molecule ligands; these assays, inspired by the considerable body of work that has been reported to characterize the interactions between small-molecules an…
Harnessing nature's insights: synthetic small molecules with peroxidase-mimicking DNAzyme properties.
International audience
A Model of Smart G-Quadruplex Ligand
An unprecedented strategy to control the quadruplex- vs duplex-DNA selectivity of a ligand is reported. We designed a compound whose structure can rearrange when it interacts with a G-quadruplex, thereby controlling its affinity. Thus, the first "smart G-quadruplex ligand" is reported, since this ligand experiences a structural change in the presence of quadruplexes but not in the presence of duplexes, ensuring a high level of quadruplex selectivity.
Multitasking Water-Soluble Synthetic G-Quartets: From Preferential RNA-Quadruplex Interaction to Biocatalytic Activity
Natural G-quartets, a cyclic and coplanar array of four guanine res- idues held together through a Watson- Crick/Hoogsteen hydrogen-bond net- work, have received recently much at- tention due to their involvement in G- quadruplex DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events. Besides this, syn- thetic G-quartets (SQ), which artificial- ly mimic native G-quartets, have also been widely studied for their involve- ment in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular syn- thetic G-quartets (iSQ), also named template-assembled synthetic G-quar- tets (TASQ), have been…
Porphyrin-Based Design of Bioinspired Multitarget Quadruplex Ligands
Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanc…
Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures
The targeting of higher-order DNA structures has been thoroughly developed with G-quadruplex DNA but not with other structures like branched DNA (also known as DNA junctions). Because these alternative higher-order DNA architectures might be of high biological relevance, we implemented a high-throughput version of the FRET melting assay that enabled us to map the interactions of a candidate with four different DNA structures (duplex- and quadruplex DNA, three- and four-way junctions) in a rapid and reliable manner. We also introduce a novel index, the BONDS (branched and other noncanonical DNA selectivity) index, to conveniently quantify this differential affinity.
Closer to nature: an ATP-driven bioinspired catalytic oxidation process
The capability of DNA to acquire enzyme-like properties has led to the emergence of the so-called DNAzyme field; herein, we take a further leap along this nature-inspired road, demonstrating that a template assembled synthetic G-quartet (TASQ) can act as a pre-catalyst for catalytic peroxidase-mimicking oxidation reactions, whatever its nature (guanine or guanosine-based G-quartets), in an ATP-dependent manner, thereby bringing this bioinspired TASQzyme process even closer to nature.
Porphyrin-templated synthetic G-quartet (PorphySQ): a second prototype of G-quartet-based G-quadruplex ligand.
Template-assembled synthetic G-quartet (TASQ) has been reported recently as a G-quadruplex ligand interacting with DNA according to an unprecedented, nature-inspired ‘like likes like’ approach, based on the association between two G-quartets, one being native (quadruplex) and the other one artificial (ligand). Herein, a novel TASQ-based ligand is designed, synthesized and its quadruplex-recognition properties are evaluated in vitro: PorphySQ (for porphyrin-templated synthetic G-quartet) displays enhanced quadruplex recognition properties as compared to the very first reported prototype (DOTASQ, for DOTA-templated synthetic G-quartet), since the porphyrin template insures a more stable intra…
Surface-immobilized DNAzyme-type biocatalysis
The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable i…
DOTASQ as a prototype of nature-inspired G-quadruplex ligand
DOTASQ (for DOTA-templated Synthetic G-quartet) is the first prototype of nature-inspired G-quadruplex ligand: its design, founded on a possible intramolecular G-quartet formation, enables it to interact with G-quadruplex DNA via an unprecedented nature-mimicking binding mode, based on the association between two G-quartets, one being native (quadruplex) and the other one artificial (ligand).
Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system
Since the initial discovery of the catalytic capability of short DNA fragments, this peculiar enzyme-like property (termed DNAzyme) has continued to garner much interest in the scientific community because of the virtually unlimited applications in developing new molecular devices. Alongside the exponential rise in the number of DNAzyme applications in the last past years, the search for convenient ways to improve its overall efficiency has only started to emerge. Credence has been lent to this strategy by the recent demonstration that the quadruplex-based DNAzyme proficiency can be enhanced by ATP supplements. Herein, we have made a further leap along this path, trying first of all to deci…
CCDC 977462: Experimental Crystal Structure Determination
Related Article: Aurélien Laguerre, Nicolas Desbois, Loic Stefan, Philippe Richard, Claude P. Gros and David Monchaud|2014|ChemMedChem|9|2035|doi:10.1002/cmdc.201300526
CCDC 977461: Experimental Crystal Structure Determination
Related Article: Aurélien Laguerre, Nicolas Desbois, Loic Stefan, Philippe Richard, Claude P. Gros and David Monchaud|2014|ChemMedChem|9|2035|doi:10.1002/cmdc.201300526