0000000001323232

AUTHOR

Marcel Dicke

showing 13 related works from this author

Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids

2018

Symbiotic relationships benefit organisms in utilization of new niches. In parasitoid wasps, symbiotic viruses and venom that are injected together with wasp eggs into the host caterpillar suppress immune responses of the host and enhance parasitoid survival. We found that the virus also has negative effects on offspring survival when placing these interactions in a community context. The virus and venom drive a chain of interactions that includes the herbivore and its food plant and attracts the hyperparasitoid enemies of the parasitoid. Our results shed new light on the importance of symbionts associated with their host in driving ecological interactions and highlight the intricacy of how…

0106 biological sciences0301 basic medicineWasps01 natural sciencesMultitrophic interactionParasitoidHerbivore-induced plant volatilesGene Expression Regulation PlantLaboratory of EntomologyTrophic levelPlant-mediatedLarvaMultidisciplinarybiologyPolydnavirusHerbivore-induced plant volatilePlantsBiological SciencesWaspPE&RCOrganische ChemieBiosystematiekInteraction networkinternationalLarvaSymbiosiButterfliesZoology010603 evolutionary biologyHost-Parasite Interactions03 medical and health sciencesMultitrophic interactionsSymbiosisButterflieAnimalsSymbiosisCaterpillarSalivaEcosystemHerbivoreParasitic waspVenomsHost (biology)AnimalOrganic ChemistryfungiPlantLaboratorium voor Entomologiebiology.organism_classificationVenom030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicataPolydnaviridaeHerbivoreBiosystematicsEPS
researchProduct

Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars

2021

Early Access; International audience; There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbor a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behavior. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here we provide the first evidence of a parasitoid-associated symbiont…

0106 biological sciencesProteomics[SDV]Life Sciences [q-bio]Waspsplant-mediated species interactionsInsect01 natural sciencesParasitoidLaboratory of Entomologymedia_commonTrophic levelparasitoid-associated symbiont2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesparasitoid‐associated symbiontsbiologyfood and beveragesPE&RChost-parasitoid interaction[SDV] Life Sciences [q-bio][SDV.EE] Life Sciences [q-bio]/Ecology environmentLarvapolydnaviruseOriginal Articleplant‐mediated species interactionsBracovirusfood.ingredientmedia_common.quotation_subjectZoologyContext (language use)Ecological Interactions010603 evolutionary biologyplant-herbivore-microbe interactionsHost-Parasite Interactions03 medical and health sciencesfoodplant-herbivore-microbe interactionGeneticsAnimalsHerbivoryCaterpillarplant‐herbivore‐microbe interactionsEcology Evolution Behavior and Systematics030304 developmental biologyHerbivorefungiOriginal Articlesbiology.organism_classificationLaboratorium voor EntomologiepolydnavirusesPolydnaviridaeparasitoid-associated symbiontsIchnovirusEPShost‐parasitoid interactionplant-mediated species interaction
researchProduct

Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications

2018

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta‐analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated t…

0106 biological sciences0301 basic medicineEco evolutionaryanalysisPhysiologyPlant ScienceAnimal Breeding and GenomicsBiologyfloral scentsChemical communicationFloral scentsphenotypic integration010603 evolutionary biology01 natural sciencesChemical communication03 medical and health sciencesPhenotypic integrationbiosynthetic constraintsFokkerij en Genomicavegetative scentsLaboratory of Entomologycorrelation networkEcologyOrganic Chemistrychemical communicationPhenotypic integrationInsect pheromonesPE&RCLaboratorium voor Entomologiecorrelation network analysisOrganische ChemieCorrelation network analysisBiosynthetic constraints030104 developmental biologyEvolutionary biologyinternationalFloral scentIdentification (biology)EPSVegetative scentsNew Phytologist
researchProduct

Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores

2018

Abstract Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant-associated and herbivore-associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third-trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third-trophic level symbionts act in combination with venom to affect plant-mediated interactions by reducing colon…

0301 basic medicineHerbivore colonisationInsecta[SDV]Life Sciences [q-bio]tritrophic interactionWaspsVenomParasitoidchenilleLaboratory of EntomologyTrophic levelbiologyEcologyPolydnavirusHost-Parasite Interactionfood and beveragesplant–insect interactionsHerbivore colonisation parasitoid plant–insect interactions polydnaviruses tritrophic interactionsPE&RCsymbiosisParasiteinternationalpolydnaviruse[SDE]Environmental Sciencespolydnavirussymbioseécologie des populationsinteraction plante insecteherbivoreplant–insect interactionHost-Parasite Interactions03 medical and health sciencesSymbiosisAnimalsParasitesHerbivoryguêpeCaterpillarparasitoidEcology Evolution Behavior and SystematicsHerbivoreAnimaltritrophic interactionsfungi15. Life on landplant-insect interactionsLaboratorium voor Entomologiebiology.organism_classificationplant insect interactionherbivore colonisationpolydnavirusesColonisationSettore AGR/11 - Entomologia Generale E Applicata030104 developmental biologycaterpillarEPS
researchProduct

Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents

2021

Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control …

InsecticidesHoneydewH10 Pests of plantsAphidoletes aphidimyzaSoybean aphidHealth Toxicology and MutagenesisPredatory midgePredatory midgesToxicologyT01 PollutionParasitic waspsNeonicotinoidschemistry.chemical_compoundOxazinesAnimalsBeneficial insectsSoybean aphidLaboratory of EntomologySeed coatingParasitic waspAphelinus certusbiologyfungiNeonicotinoidfood and beveragesGeneral MedicineNitro Compoundsbiology.organism_classificationPE&RCLaboratorium voor EntomologiePollutionThiazolesBiological Control AgentschemistryAgronomyAphidsSeed treatmentSeedsSoybeansAphis glycinesThiamethoxamEPSThiamethoxamSoybean Aphids
researchProduct

IPM-recommended insecticides harm beneficial insects through contaminated honeydew

2020

The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insec…

Integrated pest managementPollinatorInsecticidesHoneydewInsecta010504 meteorology & atmospheric sciencesHealth Toxicology and MutagenesisH Protection of plants and stored productsBiological pest controlWhitefly010501 environmental sciencesA AgricultureToxicologyEcotoxicology01 natural sciencesToxicologyT PollutionTandem Mass SpectrometryPlanococcus citriAnimalsBeneficial insectsMealybugLaboratory of EntomologyPesticides0105 earth and related environmental sciencesbiologyfungiGeneral Medicinebiology.organism_classificationPE&RCLaboratorium voor EntomologiePollutionSublethal effectsEuropeBiological Control AgentsBiological controlHoverflyEPS
researchProduct

Next-generation biological control

2020

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Nex…

0106 biological sciencesProteomicsH10 Pests of plantsInternationalityComputer science[SDV]Life Sciences [q-bio]Laboratory of VirologySequence assemblybiological controlmicrobiome01 natural sciencesGenome editinggeneticsNagoya ProtocolLaboratory of EntomologyCYTOPLASMIC INCOMPATIBILITY2. Zero hunger0303 health sciencesQUANTITATIVE TRAIT LOCICommercefood and beveragesCONTROL AGENTSPE&RCBiosystematiekNASONIA-VITRIPENNISGUT CONTENT-ANALYSIS[SDE]Environmental SciencesTraitinsect breedingAXYRIDIS COLEOPTERA-COCCINELLIDAEOriginal ArticleLaboratory of GeneticsLIFE-HISTORY TRAITSGeneral Agricultural and Biological SciencesGenomicsContext (language use)Computational biology[SDV.BID]Life Sciences [q-bio]/Biodiversityartificial selectionQuantitative trait locusAnimal Breeding and GenomicsLaboratorium voor Erfelijkheidsleer010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyLaboratorium voor Virologiemodelling03 medical and health sciencesgenomics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyFokkerij en GenomicaPARASITOID WASPSelection (genetic algorithm)modelling.030304 developmental biologySEX DETERMINATIONOriginal ArticlesLaboratorium voor EntomologieWIASgenome assemblyBiosystematicsEPSartificial selection biological control genetics genome assembly genomics insect breeding microbiome modellingBiological Reviews
researchProduct

Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack

2016

Infochemicals play an important role in structuring intra-and interspecific interactions. Many parasitoid wasp species rely on herbivory or oviposition-induced plant volatiles (HIPVs/OIPVs) to locate their herbivorous hosts, and must cope with variation in the volatile blends due to factors such as plant/host species, herbivore density or attack by several herbivores. However, little is known about how dual herbivory or changes in herbivore density affect multiple parasitoid species, each attacking a different herbivore, in the same system. In a natural system, we investigated the effect of dual attack on the ability of three parasitoid species to differentiate between volatiles induced by …

0106 biological sciences010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoid waspParasitoidMultiple attackMultitrophic interactionsHerbivore-induced plant volatilesBotanyLaboratory of EntomologyEcology Evolution Behavior and Systematics016-3906Pieris brassicaeAphidbiologyDiaeretiella rapaeOviposition-induced plant volatilesHerbivore-induced plant volatileTrichogramma brassicaebiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor EntomologieBiosystematiekSettore AGR/11 - Entomologia Generale E ApplicataBrevicoryne brassicaeIndirect defenceBiosystematicsAnimal Science and ZoologyEPS010606 plant biology & botany
researchProduct

Microbial symbionts of parasitoids

2020

Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities…

Indirect interaction0106 biological sciencesInsectaInsect01 natural sciencesMultitrophic interactionParasitoidFood chainLaboratory of Entomologymedia_commonTrophic level0303 health sciencesbiologyEcologyMicrobiotaIndirect interactionsHost-Parasite Interactionfood and beveragesPE&RCParasitoid-host interactionPhenotypeDirect interactionVirusesDirect interactionsFood Chainanimal structuresmedia_common.quotation_subjectInsect-plant interactionZoology010603 evolutionary biologyHost-Parasite Interactions03 medical and health sciencesSymbiosisMultitrophic interactionsAnimalsSymbiosisEcology Evolution Behavior and Systematics030304 developmental biologyHerbivoreCommunityBacteriaViruseAnimalHost (biology)fungibiochemical phenomena metabolism and nutritionbiology.organism_classificationLaboratorium voor EntomologieInsect ScienceParasitoid-host interactionsInsect-plant interactionsbacteriaEPS
researchProduct

Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context

2015

In response to insect herbivory, plants emit volatile organic compounds which may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. In nature, plants are often attacked by multiple herbivores, but the majority of studies which have investigated indirect plant defenses to date have focused on the recruitment of different parasitoid species in a single-herbivore context. Here, we report our investigation on the attraction of egg parasitoids of lepidopteran hosts (Trichogramma brassicae and T. evanescens) toward plant volatiles induced by different insect herbivores in olfactometer bioassays. We used a system consisting of a native crucifer, Brassica nigr…

OIPVsWaspsPheromoneSpodopteraPheromonesMultitrophic interactionParasitoid foraging behaviourParasitoidHost-Parasite InteractionsMultitrophic interactionsVolatile Organic CompoundBotanyPlant defense against herbivoryButterflieIndirect plant defencesAnimalsHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsOIPVOvumPieris brassicaeAphidVolatile Organic CompoundsbiologyHIPVEPS-2HIPVsAnimalMedicine (all)fungifood and beveragesHost-Parasite InteractionTrichogramma brassicaeFeeding BehaviorWaspLaboratorium voor Entomologiebiology.organism_classificationEcology Evolution Behavior and SystematicChemical ecologySettore AGR/11 - Entomologia Generale E ApplicataBrevicoryne brassicaeLarvaButterfliesTrichogrammaIndirect plant defenceMustard Plant
researchProduct

Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects

2019

Significance The use of insecticides in agriculture is one of the suggested causes of the decline in insect populations. Neonicotinoids are among the most widely used insecticides. However, they have important negative side effects, especially for pollinators and other beneficial insects feeding on floral nectar and pollen. We identified an exposure route: Neonicotinoids reach and kill beneficial insects when they feed on the most abundant carbohydrate source for insects in agroecosystems, honeydew. Honeydew is the excretion product of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, or psyllids. This route of exposure is likely to affect a much wider range of benefi…

0106 biological sciencesHoneydewInsectaPhloemBiology010603 evolutionary biology01 natural sciencesBiological control agentsToxicologyNeonicotinoidschemistry.chemical_compoundPollinatorImidaclopridAnimalsNectarBeneficial insectsLaboratory of EntomologyMultidisciplinaryAgricultural Sciencesbusiness.industryPollinatorsfungiNeonicotinoidPest controlfood and beveragesFeeding BehaviorBiological SciencesPE&RCEnvironmental risk assessmentLaboratorium voor EntomologieSurvival AnalysisCucurbitaceae010602 entomologyHoneydewchemistryThiamethoxamEPSbusinessThiamethoxam
researchProduct

Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

2019

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of th…

0106 biological sciencesFood ChainSDG 16 - PeaceForagingWaspsContext (language use)010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoidPlant-Microbe-Animal Interactions–Original ResearchHost-Parasite InteractionsHyperparasitoid foraging behaviorFourth trophic level organismsMultitrophic interactionsFourth trophic level organismButterflieAnimalsNon-host parasitoid specieHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelPieris brassicaeHerbivorebiologyHost (biology)EcologyAnimal010604 marine biology & hydrobiologySDG 16 - Peace Justice and Strong InstitutionsnationalHost-Parasite Interactionbiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor Entomologie/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsJustice and Strong InstitutionsPlant-based food webLarvaEPSButterfliesNon-host parasitoid speciesOecologia
researchProduct

Data from: Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores

2018

Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant–insect interactions. Although plant‐associated and herbivore‐associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third‐trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third‐trophic level symbionts act in combination with venom to affect plant‐mediated interactions by reducing colonisation o…

tritrophic interactionsfungifood and beveragesPieris brassicaeplant-insect interactionsPE&RCLaboratorium voor EntomologieLife sciencespolydnavirusesmedicine and health careCgBVherbivore colonizationMedicineBrassica oleraceaPlutella xylostellaEPSLaboratory of EntomologyCotesia glomerataparasitoid
researchProduct