6533b7cffe1ef96bd12590fc

RESEARCH PRODUCT

Random wave run-up with a physically-based Lagrangian shoreline model

Rosaria Ester MusumeciEnrico FotiC. Lo ReGiovanni Battista Ferreri

subject

ShoreBoussinesq numerical modelgeographygeography.geographical_feature_categoryMeteorologyNumerical analysisBreaking waveVideo cameraGeneral Medicineirregular wave run-upGeodesyirregular wave run-up; Boussinesq numerical model; shorelineRandom waveslaw.inventionSettore ICAR/01 - IdraulicaFlumesymbols.namesakeshorelinelawsymbolsTransectGeologyLagrangianEngineering(all)

description

Abstract In the present paper the run-up of random waves was calculated by means of a numerical method. In situ measurements based on a video imaging technique have been used for the validation of the present numerical model. The on-site run-up measurements have been carried out at Lido Signorino beach, near Marsala, Italy,along a transect, normal to the shore. A video camera and a linear array of rods have been used to obtain field data. Numerical simulations with a 1DH Boussinesq-type of model for breaking waves which takes into account the wave run-up by means of a Lagrangian shoreline model have been carried out. In such simulations random waves of given spectrum have been propagated in a numerical flume having the same beach slope of the measured transect. The comparison between registered and estimated run-up underlined an acceptable agreement. Indeed, the numerical model tends to underestimate the actual R2%, with the maximum underestimate being less than 24%, which is a reasonable error in many cases of engineering interest.

10.1016/j.proeng.2014.02.116http://hdl.handle.net/10447/101002