6533b7d2fe1ef96bd125eb9c

RESEARCH PRODUCT

A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation

Uwe WolfrumTimor BaasovNora OverlackTobias GoldmannKerstin Nagel-wolfrumMichiel Van WykValery BelakhovFabian Möller

subject

MaleRetinal DisorderUsher syndromemedia_common.quotation_subjectNonsenseNonsense mutationPeptide Chain Elongation TranslationalCell Cycle ProteinsIn Vitro TechniquesBiologyPharmacologymedicine.disease_causeRetinaCell LineMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRetinal DiseasesIn vivoretinitis pigmentosaRetinitis pigmentosaotorhinolaryngologic diseasesmedicineAnimalsHumansResearch ArticlesAdaptor Proteins Signal Transducingpharmacogenetics030304 developmental biologymedia_commonOxadiazoles0303 health sciencesMutationsensoneuronal degenerationRetinalmedicine.diseasedrug therapy3. Good healthMice Inbred C57BLCytoskeletal ProteinsAminoglycosideschemistryCodon NonsenseMolecular MedicineFemaleUsher syndrome030217 neurology & neurosurgery

description

Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders.

10.1002/emmm.201201438http://dx.doi.org/10.1002/emmm.201201438