6533b7d5fe1ef96bd1263c49
RESEARCH PRODUCT
On-line tools for microscopic and macroscopic monitoring of microwave processing
S. VaucherR. NiculaJose M. Catala-civeraDominique BernardMartin KuballL. DuboisM. StampanoniC. RicardP. UnifantowiczP. Unifantowiczsubject
SiliconRadiometerschemistry.chemical_element02 engineering and technologyengineering.materialMicrowave radiation interactions with condensed matter[SPI]Engineering Sciences [physics]symbols.namesakeCondensed Matter::Materials ScienceOpticsAluminium0202 electrical engineering electronic engineering information engineeringRaman spectroscopy in condensed matterElectrical and Electronic EngineeringComputed tomographyPowder mixtureSynchrotron radiationbusiness.industryDiamond020206 networking & telecommunications[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureElectronic Optical and Magnetic MaterialschemistryengineeringsymbolsAluminium powder0210 nano-technologybusinessRaman spectroscopyMicrowavedescription
International audience; Direct monitoring of temperature, chemistry and microstructure is required to understand microwave heating in more detail, in order to fully exploit the unique features this non-equilibrium processing method can offer. In this paper, we show first that microwave radiometry can be used to follow volumetrically the thermal trajectory of microwave-heated aluminium powder. In-situ Raman spectroscopy is then shown to evidence thermal gradients between diamond and silicon grains in a binary powder mixture. Finally, perspectives and preliminary results of microstructural analysis obtained from X-ray microtomography are presented.
year | journal | country | edition | language |
---|---|---|---|---|
2007-09-01 |