6533b7d5fe1ef96bd1265374
RESEARCH PRODUCT
Solid microcrystalline dispersion films as a new strategy to improve the dissolution rate of poorly water soluble drugs: A case study using olanzapine
Maria De Fátima PinaLaura Modica De MohacBahijja Tolulope Raimi-abrahamsubject
3003PVPDrug CompoundingSolid microcrystalline dispersionPharmaceutical SciencePoloxamer02 engineering and technologyPolyethylene Glycol030226 pharmacology & pharmacyPolyethylene GlycolsBenzodiazepines03 medical and health sciences0302 clinical medicineDifferential scanning calorimetrymedicineParticle SizePyrrolidinoneSolubilityFourier transform infrared spectroscopyPolymerPolyvinylDissolutionPharmaceutical filmBenzodiazepineChromatographyCrystallineChemistryHydrogen BondingPoloxamer021001 nanoscience & nanotechnologyPyrrolidinonesDrug LiberationMicrocrystallineSolubilityChemical engineeringOlanzapinePoloxamer 407PolyvinylsParticle sizeCrystallization0210 nano-technologymedicine.drugdescription
In this study, we evaluate the dissolution rate enhancement of solid microcrystalline dispersion (SMD) films of olanzapine (OLZ) formulated with four water-soluble polymers namely poly(N-vinylpyrrolidone) (PVP), poloxamer 188 (P188), poloxamer 407 (P407) and Soluplus(®) (SLP). Prepared formulations were characterised to determine particle size, morphology, hydrogen bonding interactions, thermal characteristics as well as in vitro dissolution studies conducted under sink conditions (pH 6.8). Particle size of OLZ in all formulations ranged between 42 and 58μm. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC) and Hot-Stage Microscopy (HSM) studies confirmed OLZ was well maintained in its crystalline state during the formulation process. In vitro dissolution studies showed immediate drug release from all formulation when compared to the drug alone. The greatest increase in in vitro dissolution rate was observed in formulations containing P188 most likely due to its enhanced hydrophilic and surfactant properties compared to the other agents used. Overall, this study successfully generated OLZ loaded SMD films with improved in vitro dissolution rates which is highly likely to result in improved oral bioavailability in vivo.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-01 | International Journal of Pharmaceutics |