6533b7d7fe1ef96bd1267afd

RESEARCH PRODUCT

Integrated optic surface plasmon resonance measurements in a borosilicate glass substrate

Alfonso Carmelo CinoS. Riva-sanseverinoAlessandro BusaccaAntonino ParisiMatteo Cherchi

subject

Physics::OpticsSubstrate (electronics)Biosensors; Integrated Optics; Surface Plasmon Resonancelcsh:Chemical technologyBiochemistryArticleAnalytical Chemistrylaw.inventionOpticslawSurface plasmon resonancelcsh:TP1-1185Electrical and Electronic EngineeringSurface plasmon resonanceThin filmInstrumentationChemistrybusiness.industryBorosilicate glassIntegrated opticsAtomic and Molecular Physics and OpticsWavelengthBiosensorsbusinessBiosensorRefractive indexWaveguide

description

The surface plasmon resonance (SPR) technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window) of different solutions with refractive indexes in the range of interest (1.3÷1.5) for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

10.3390/s8117113https://doi.org/10.3390/s8117113