6533b7d7fe1ef96bd1267c68
RESEARCH PRODUCT
Low-temperature molecular layer deposition using monifunctional aromatic precursors and ozone-based ring-opening reactions
Maarit KarppinenTimo SajavaaraLaura SvärdPekka SimellMatti PutkonenEija KenttäKevin Van De KerckhoveFabian KrahlChristophe Detaverniersubject
Vapor pressureHydrostatic pressure02 engineering and technologyphenols01 natural sciencesdepositionchemistry.chemical_compoundhybrid materialsElectrochemistryGeneral Materials Sciencecharacterizationinfrared spectroscopyta116Spectroscopyring opening reactionTrifluoromethylvapor pressurehybrid organic-inorganiclow-temperatureSurfaces and Interfacesself assembly021001 nanoscience & nanotechnologyCondensed Matter Physicsdecay (organic)hydrostatic pressure0210 nano-technologyHybrid materialLayer (electronics)Inorganic chemistryta221mechanismnegative ions010402 general chemistrycomplex mixturesinorganic coatingsBenzaldehydeAtomic layer depositionPhenolta216ta115ta114aromatic compoundsmonofunctional aromaticstemperature0104 chemical sciencesozonechemistryALDatomic layer depositionMLDdescription
Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions to achieve sustained sequential growth. MLD depositions were carried out by using three different aromatic precursors in an ABC sequence, namely with TMA + phenol + O3, TMA + 3-(trifluoromethyl)phenol + O3, and TMA + 2-fluoro-4-(trifluoromethyl)benzaldehyde + O3. Furthermore, the effect of hydrogen peroxide as a fourth step was evaluated for all studied processes resulting in a four-precursor ABCD sequence. According to the characterization results by ellipsometry, infrared spectroscopy, and X-ray reflectivity, self-limiting MLD processes could be obtained between 75 and 150 °C with each of the three aromatic precursors. In all cases, the GPC (growth per cycle) decreased with increasing temperature. In situ infrared spectroscopy indicated that ring-opening reactions occurred in each ABC sequence. Compositional analysis using time-of-flight elastic recoil detection indicated that fluorine could be incorporated into the film when 3-(trifluoromethyl)phenol and 2-fluoro-4-(trifluoromethyl)benzaldehyde were used as precursors.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 | Langmuir |