Search results for "deposition"
showing 10 items of 1324 documents
Phosphorous doping and drawing effects on the Raman spectroscopic properties of O=P bond in silica-based fiber and preform.
2012
International audience; We report an experimental study of the doping and drawing effects on the Raman activities of phosphorus (P)-doped silica-based optical fiber and its related preform. Our data reveal a high sensitivity level in the full width at half maximum value of the 1330 cm−1 (O = P) Raman band to the P-doping level. Its increase with the P doping level does not clash with an increase in the disorder of the O = P surrendering matrix. In addition, we observe that in the central core region of the sample (higher doping level), the drawing process decreases the relative band amplitude. We tentatively suggest that this phenomenon is due to the change in the first derivate of the bond…
Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors
2019
We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…
Effect of space charge on the negative oxygen flux during reactive sputtering
2017
Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.
High‐Quality Si‐Doped β‐Ga 2 O 3 Films on Sapphire Fabricated by Pulsed Laser Deposition
2020
The EU Horizon 2020 project CAMART2 is acknowledged for partly supporting the project, and the Ion Technology Centre, ITC, in Sweden is acknowledged for ion beam analysis (ERDA).
Coeval Cold Spray Additive Manufacturing Variances and Innovative Contributions
2017
Tremendous attention has been given to the cold spray process, even more today with the emergence of additive manufacturing, worldwide. Several inventions related to the cold spray technology have been patented for over a century and mostly since a couple of decades. But the cold spray technology knows a period of great innovations due to recent and current substantial explorations. Various technological solutions have been developed. The technical dimension, and particularly in terms of manufacturing method, has also always been a major genesis of progresses and novelties. This chapter is a technological survey of the cold spray additive manufacturing and reports variant methods and innova…
Topological insulator nanoribbon Josephson junctions: Evidence for size effects in transport properties
2020
We have used Bi$_2$Se$_3$ nanoribbons, grown by catalyst-free Physical Vapor Deposition to fabricate high quality Josephson junctions with Al superconducting electrodes. In our devices we observe a pronounced reduction of the Josephson critical current density $J_c$ by reducing the width of the junction, which in our case corresponds to the width of the nanoribbon. Because the topological surface states extend over the entire circumference of the nanoribbon, the superconducting transport associated to them is carried by modes on both the top and bottom surfaces of the nanoribbon. We show that the $J_c$ reduction as a function of the nanoribbons width can be accounted for by assuming that on…
Silicon Surface Passivation by ALD-Ga2O3: Thermal vs. Plasma-Enhanced Atomic Layer Deposition
2020
Silicon surface passivation by gallium oxide (Ga2O3) thin films deposited by thermal- and plasma-enhanced atomic layer deposition (ALD) over a broad temperature range from 75 °C to 350 °C is investigated. In addition, the role of oxidant (O3 or O-plasma) pulse lengths insufficient for saturated ALD-growth is studied. The material properties are analyzed including the quantification of the incorporated hydrogen. We find that oxidant dose pulses insufficient for saturation provide for both ALD methods generally better surface passivation. Furthermore, different Si surface pretreatments are compared (HF-last, chemically grown oxide, and thermal tunnel oxide). In contrast to previous reports, t…
Atomic Layer Deposition and Properties of Lanthanum Oxide and Lanthanum-Aluminum Oxide Films
2006
Atomic layer deposition (ALD) of lanthanum oxide on glass and silicon substrates was examined using lanthanum silylamide, La[N(SiMe 3 ) 2 ] 3 , and water as precursors in the substrate temperature range of 150-250 °C. The effect of pulse times and precursor evaporation temperature on the growth rate and refractive index was investigated. The films remained amorphous regardless of the deposition conditions. The resulting La 2 O 3 films contained noticeable amounts of hydrogen and silicon and were chemically unstable while stored in ambient air. Lanthanum aluminum oxide films were achieved with stoichiometry close to that of LaAlO 3 at 225°C from La[N(SiMe 3 ) 2 ] 3 , Al(CH 3 ) 3 , and H 2 O.…
Key factors towards a high-quality additive manufacturing process with ABS material
2019
Abstract Additive Manufacturing technologies have gained a lot of popularity during the past years. The current challenge being the transition of this manufacturing technology from prototype oriented towards mass production. In order to achieve this, fabrication times and mechanical parameters must be improved. This paper aims to identify which are the parameters that have the highest influence on parts obtained with fused deposition modeling (FDM) technology from ABS material. In addition, this study identifies which are the most accurate methods to test the mechanical properties of FDM parts while still respecting ASTM standard for testing the tensile properties of plastics. It was found …
The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges
2017
Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…