6533b7d7fe1ef96bd12684a1
RESEARCH PRODUCT
Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model
José FerrerJ. RibesF. Garcia-usachAurora Secosubject
Environmental EngineeringNitrogenElectronsPilot ProjectsModels BiologicalWaste Disposal FluidDenitrifying bacteriaPolyphosphatesCalibrationProcess optimizationAnaerobiosisWaste Management and DisposalAcetic AcidWater Science and TechnologyCivil and Structural EngineeringAutotrophic ProcessesNitratesBacteriaSewageChemistryEcological ModelingEnvironmental engineeringPhosphorusPollutionAnoxic watersOxygenPolyphosphate-accumulating organismsPilot plantActivated sludgeEnhanced biological phosphorus removalCalibrationBiological systemdescription
Abstract This paper presents the results of an experimental study for the modelling and calibration of denitrifying activity of polyphosphate accumulating organisms (PAOs) in full-scale WWTPs that incorporate simultaneous nitrogen and phosphorus removal. The convenience of using different yields under aerobic and anoxic conditions for modelling biological phosphorus removal processes with the ASM2d has been demonstrated. Thus, parameter ηPAO in the model is given a physical meaning and represents the fraction of PAOs that are able to follow the DPAO metabolism. Using stoichiometric relationships, which are based on assumed biochemical pathways, the anoxic yields considered in the extended ASM2d can be obtained as a function of their respective aerobic yields. Thus, this modification does not mean an extra calibration effort to obtain the new parameters. In this work, an off-line calibration methodology has been applied to validate the model, where general relationships among stoichiometric parameters are proposed to avoid increasing the number of parameters to calibrate. The results have been validated through a UCT scheme pilot plant that is fed with municipal wastewater. The good concordance obtained between experimental and simulated values validates the use of anoxic yields as well as the calibration methodology. Deterministic modelling approaches, together with off-line calibration methodologies, are proposed to assist in decision-making about further process optimization in biological phosphate removal, since parameter values obtained by off-line calibration give valuable information about the activated sludge process such as the amount of DPAOs in the system.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-28 | Water Research |