6533b7d8fe1ef96bd126a40d

RESEARCH PRODUCT

A Branch-and-Cut method for the Capacitated Location-Routing Problem

Caroline ProdhonJosé-manuel BelenguerChristian PrinsR. Wolfler-calvoEnrique Benavent

subject

Dynamic Source RoutingMathematical optimizationGeneral Computer ScienceComputer scienceEqual-cost multi-path routingRouting tableTesting0211 other engineering and technologiesGeographic routingLogistics02 engineering and technologyManagement Science and Operations ResearchBranch and CutSimulated annealingStochastic processesBranch-and-CutLocation-RoutingVehicle routing problem0202 electrical engineering electronic engineering information engineeringFacility locationDestination-Sequenced Distance Vector routingRoutingMathematicsStatic routing021103 operations researchLocation routingLower BoundLinear modelVehiclesIterative algorithms[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO]Facility location problemVehicle routingCostsLocation-Routing ProblemLink-state routing protocolLagrangian functionsModeling and SimulationMultipath routing020201 artificial intelligence & image processingFittingRouting (electronic design automation)Branch and cutDrawback

description

International audience; Recent researches in the design of logistic networks have shown that the overall distribution cost may be excessive if routing decisions are ignored when locating depots. The Location-Routing Problem (LRP) overcomes this drawback by simultaneously tackling location and routing decisions. The aim of this paper is to propose an exact approach based on a Branch-and-Cut algorithm for solving the LRP with capacity constraints on depots and vehicles. The proposed method is based on a zero-one linear model strengthened by new families of valid inequalities. The computational evaluation on three sets of instances (34 instances in total), with 5–10 potential depots and 20–88 customers, shows that 26 instances with five depots are solved to optimality, including all instances with up to 40 customers and three with 50 customers.

10.1016/j.cor.2010.09.019https://utt.hal.science/hal-02475782