6533b7dafe1ef96bd126e114

RESEARCH PRODUCT

Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging.

Stefanie PektorRafael Muñoz-espíRafael Muñoz-espíKatharina LandfesterVolker MailänderPatricia RenzDaniel CrespyIsabel SchlegelNicole BausbacherJohanna SimonIngo LieberwirthMatthias Miederer

subject

BiodistributionPolymers and PlasticsPolymersGadoliniumMRI contrast agentchemistry.chemical_elementContrast MediaBioengineeringGadolinium02 engineering and technology010402 general chemistry01 natural sciencesNanocapsulesGadobutrolBiomaterialschemistry.chemical_compoundCrystallinityMiceNanocapsulesMaterials ChemistrymedicineOrganometallic CompoundsAnimalsHumansTissue DistributionPolyureaMesenchymal Stem CellsDendrites021001 nanoscience & nanotechnologyMagnetic Resonance Imaging0104 chemical scienceschemistryLiverNanocarriers0210 nano-technologySpleenBiotechnologyBiomedical engineeringmedicine.drug

description

Magnetic resonance imaging has become an essential tool in medicine for the investigation of physiological processes. The key issues related to contrast agents, i.e., substances that are injected in the body for imaging, are the efficient enhancement of contrast, their low toxicity, and their defined biodistribution. Polyurea nanocapsules containing the gadolinium complex Gadobutrol as a contrast agent in high local concentration and high relaxivity up to 40 s-1 mmol-1 L are described. A high concentration of the contrast agent inside the nanocapsules can be ensured by increasing the crystallinity in the shell of the nanocapsules. Nanocapsules from aliphatic polyurea are found to display higher crystallinity and higher relaxivity at an initial Gadobutrol concentration of 0.1 m than aromatic polyurea nanocapsules. The nanocapsules and the contrast agent are clearly identified in cells. After injection, the nanocarriers containing the contrast agent are mostly found in the liver and in the spleen, which allow for a significant contrast enhancement in magnetic resonance imaging.

10.1002/mabi.201700387https://pubmed.ncbi.nlm.nih.gov/29392837