6533b7dbfe1ef96bd126ffad
RESEARCH PRODUCT
Antimicrobial Activity of Resveratrol Analogues
Philippe MeunierDominique Vervandier-fasseurAbdelwahad EchairiMalik ChalalAgnès KlinguerMarielle Adriansubject
Zoosporeresveratrol; stilbenes; grapevine; downy mildew; grey mold; <i>Plasmopara viticola</i>; <i>Botrytis cinerea</i>[SDV]Life Sciences [q-bio]resveratrol;stilbenes;grapevine;downy mildew;grey mold;Plasmopara viticola;Botrytis cinereaPharmaceutical ScienceFungusResveratrolArticleAnalytical ChemistryMicrobiologylcsh:QD241-441chemistry.chemical_compoundPlasmopara viticolaBotrytis cinerealcsh:Organic chemistryAnti-Infective AgentsDrug DiscoveryStilbenesmildiou de la vigne[SDV.BV]Life Sciences [q-bio]/Vegetal Biologygrey moldPhysical and Theoretical ChemistryBotrytis cinereaOomycetebiologydowny mildewOrganic Chemistrybiology.organism_classificationAntimicrobialgrapevinestilbenechemistryChemistry (miscellaneous)ResveratrolPlasmopara viticola[SDE]Environmental SciencesMolecular MedicineDowny mildewpourriture grise de la vigneBotrytisvignedescription
Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure ( number and position of methoxy and hydroxy groups) and antimicrobial activity.
year | journal | country | edition | language |
---|---|---|---|---|
2014-06-10 | Molecules |