6533b7dbfe1ef96bd1271564
RESEARCH PRODUCT
Modeling light and temperature influence on ammonium removal by Scenedesmus sp. under outdoor conditions.
Ana Ruiz-martínezAurora SecoJ. SerraltaJosé Ferrersubject
Environmental EngineeringLight020209 energyPhotobioreactorAnaerobic membrane bioreactor02 engineering and technology010501 environmental sciencesWastewaterAmmonium removal01 natural sciencesWaste Disposal Fluidchemistry.chemical_compoundPhotobioreactorsAmmonium Compounds0202 electrical engineering electronic engineering information engineeringMicroalgaeAmmoniumEffluentScenedesmusTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyChromatographybiologyChemistryModelingTemperatureModels Theoreticalbiology.organism_classificationLight intensityWastewaterScenedesmusdescription
[EN] The ammonium removal rate of the microalga Scenedesmus sp. was studied under outdoor conditions. Microalgae were grown in a 500 L flat-plate photobioreactor and fed with the effluent of a submerged anaerobic membrane bioreactor. Temperature ranged between 9.5 WC and 32.5 WC and maximum light intensity was 1,860 μmol·m2·s1. A maximum specific ammonium removal rate of 3.71 mg NH4 þ-N·g TSS1·h1 was measured (at 22.6 WC and with a light intensity of 1,734 μmol·m2·s1). A mathematical model considering the influence of ammonium concentration, light and temperature was validated. The model successfully reproduced the observed values of ammonium removal rate obtained and it is thus presented as a useful tool for plant operation.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-10 | Water science and technology : a journal of the International Association on Water Pollution Research |