6533b7dcfe1ef96bd12721b8

RESEARCH PRODUCT

Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere.

Jonathan NegrelSameh SelimSilvio GianinazziD. Van TuinenC. Govaerts

subject

Polymyxin B1medicine.drug_classPolymyxinSize-exclusion chromatographyPeptideTripeptideMicrobial Sensitivity TestsGram-Positive BacteriaApplied Microbiology and BiotechnologyPeptides CyclicPlant RootsPaenibacillusFusariumAntibiosisGram-Negative BacteriamedicineEnvironmental MicrobiologyPolymyxinsThreonineSoil MicrobiologySorghumchemistry.chemical_classificationEcologyMolecular massbiologybiology.organism_classificationBiochemistrychemistryFood ScienceBiotechnology

description

ABSTRACT Paenibacillus sp. strain B2, isolated from the mycorrhizosphere of sorghum colonized by Glomus mosseae , produces an antagonistic factor. This factor has a broad spectrum of activity against gram-positive and gram-negative bacteria and also against fungi. The antagonistic factor was isolated from the bacterial culture medium and purified by cation-exchange, reverse-phase, and size exclusion chromatography. The purified factor could be separated into three active compounds following characterization by amino acid analysis and by combined reverse-phase chromatography and mass spectrometry (liquid chromatography-mass spectrometry and mass spectrometry-mass spectrometry). The first compound had the same retention time as polymyxin B 1 , whereas the two other compounds were more hydrophobic. The molecular masses of the latter compounds are 1,184.7 and 1,202.7 Da, respectively, and their structure is similar to that of polymyxin B 1 , with a cyclic heptapeptide moiety attached to a tripeptide side chain and a fatty acyl residue. They both contain threonine, phenylalanine, leucine, and 2,4-diaminobutyric acid residues. The peptide with a molecular mass of 1,184.7 contains a 2,3-didehydrobutyrine residue with a molecular mass of 101 Da replacing a threonine at the A2 position of the polymyxin side chain. This modification could explain the broader range of antagonistic activity of this peptide compared to that of polymyxin B.

10.1128/aem.71.11.6501-6507.2005https://pubmed.ncbi.nlm.nih.gov/16269674