6533b81ffe1ef96bd127870b
RESEARCH PRODUCT
Dibutyltin(IV) complexes containing arylazobenzoate ligands: chemistry, in vitro cytotoxic effects on human tumor cell lines and mode of interaction with some enzymes.
Tushar S. Basu BaulPooja VermaAnup PaulEdward R. T. TiekinkPalwinder SinghAndrew DuthieLorenzo PelleritoMichelangelo ScopellitiDick De Vossubject
Models MolecularStereochemistryMolecular ConformationCrystallography X-RayLigandsThymidylate synthaseAnti-cancer drugchemistry.chemical_compoundCell Line TumorRibonucleotide ReductasesOrganotin CompoundsMoleculeHumansPharmacology (medical)CarboxylateArylazobenzoateSpectroscopyPharmacologychemistry.chemical_classificationBinding SitesbiologyCell DeathTopoisomeraseHydrogen BondingThymidylate SynthaseIn vitroEnzymesRibonucleotide reductaseEnzymeDNA Topoisomerases Type IIOncologychemistrySettore CHIM/03 - Chimica Generale E InorganicaDocking (molecular)Docking studieDibutyltin(IV) compoundbiology.proteinQuantum TheoryDrug Screening Assays AntitumorCell linedescription
Dibutyltin(IV) complexes of composition Bu2Sn (LH)2, where LH is a carboxylate residue derived from 2-[(E)- (5-tert-butyl-2- hydroxyphenyl)diazenyl]benzoate (L1H) with water molecule (1), 4-[(E)-(5-tert-butyl-2-hydroxyphenyl) diazenyl]benzoate (L2H) (2) and 4-[(E)-(4-hydroxy-5- methylphenyl)diazenyl]benzoate (L3H) (3), were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques. A full characterization was accomplished from the crystal structure of complex 1. The molecular structures and geometries of the complexes (1a i.e. 1 without water molecule and 3) were fully optimized using the quantum mechanical method (PM6). Complexes 1 and 3 were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumor cell lines viz., A498, EVSAT, H226, IGROV, M19 MEL, MCF-7 and WIDR. Compound 3 is found to be four times superior for the A498, EVSA-T and MCF-7 cell lines than CCDP (cisplatin), and four, eight and sixteen times superior for the A498, H226 and MCF-7 cell lines, respectively, compared to ETO (etoposide). The mechanistic role of cytotoxic activity of test compounds is discussed in relation to the theoretical results of docking studies with some key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II associated with the propagation of cancer. © Springer Science+Business Media, LLC 2009.
year | journal | country | edition | language |
---|---|---|---|---|
2009-11-05 | Investigational new drugs |