6533b821fe1ef96bd127ad84
RESEARCH PRODUCT
Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits
Lixian ZhangHamid Reza KarimiXudong ZhaoPeng Shisubject
Lyapunov functionMathematical optimizationConvex setStability (learning theory)robust stabilitysymbols.namesakevectorsExponential stabilityControl theoryElectronic circuitsElectrical and Electronic EngineeringuncertaintyLyapunov methodsMathematicsLyapunov functionsComputer Science Applications1707 Computer Vision and Pattern RecognitionStability conditionsuncertain systemsControl and Systems Engineeringsymbolselectronic circuitsElectronic circuits; Lyapunov functions; polytopic uncertainties; robust stability; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringRobust controlrobust controlNetwork analysispolytopic uncertaintiesdescription
In this paper, the problems of robust stability and stabilization are investigated for a class of continuous-time uncertain systems. The uncertainties in the model are state-dependent and belong to a polytopic convex set, as can be found in many electronic circuits and some other applications. The global asymptotic stability conditions for such systems are first established by the classic common quadratic Lyapunov function approach. To reduce conservativeness, a particular class of nonquadratic parameter-dependent Lyapunov functions is introduced, by which improved robust stability conditions for the underlying systems are also derived. Based on the stability criteria, a static output feedback controller is then designed for the system. The effectiveness of the proposed approaches is illustrated by a numerical example, and the applicability of our theoretical findings is simultaneously demonstrated by modeling, analysis, and control design for a class of electronic circuits. Refereed/Peer-reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-01 |