6533b821fe1ef96bd127ae79
RESEARCH PRODUCT
Sulphate removal over barium-modified blast-furnace-slag geopolymer
Pekka TynjäläKimmo KemppainenUlla LassiUlla LassiTeija KangasEmma-tuulia TolonenEmma-tuulia TolonenTero LuukkonenHanna RunttiSari TuomikoskiMinna SarkkinenMikko NiskanenJaakko Rämösubject
metakaolinEnvironmental EngineeringSorbentMaterials scienceHealth Toxicology and Mutagenesischemistry.chemical_element02 engineering and technology010501 environmental sciences01 natural sciencesAdsorptionEnvironmental Chemistryta215Waste Management and Disposalta218geopolymerMetakaolin0105 earth and related environmental sciencesMetallurgySlagSorptionBarium021001 nanoscience & nanotechnologyPollutionsulphateGeopolymerchemistryblast-furnace slagadsorptionGround granulated blast-furnace slagvisual_artvisual_art.visual_art_medium0210 nano-technologydescription
Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-18 | Journal of Hazardous Materials |