6533b821fe1ef96bd127c4c6

RESEARCH PRODUCT

Lactobacilli Degrade Wheat Amylase Trypsin Inhibitors to Reduce Intestinal Dysfunction Induced by Immunogenic Wheat Proteins.

Detlef SchuppanDetlef SchuppanXuechen B. YuMarc PigrauJennifer JuryJavier CasqueiroAlberto CamineroHeather J. GalipeauStephen M. CollinsVictor F. ZevallosArmin AlaediniJustin L. MccarvilleElena F. VerduJoseph A. MurrayPremysl BercikAlexandra V. Clarizio

subject

0301 basic medicineInflammationdigestive systemSensitivity and SpecificityGliadin03 medical and health sciencesDiet Gluten-FreeMiceRandom Allocation0302 clinical medicineImmune systemReference ValuesLactobacillusmedicineAnimalsHumansAmylaseTriticum2. Zero hungerchemistry.chemical_classificationToll-like receptorHepatologybiologybusiness.industryGastroenterologynutritional and metabolic diseasesbiology.organism_classificationGlutendigestive system diseasesSmall intestineImmunity Innate3. Good healthGastrointestinal MicrobiomeMice Inbred C57BLCeliac DiseaseDisease Models AnimalLactobacillus030104 developmental biologymedicine.anatomical_structurechemistryImmunologyAmylasesbiology.proteinIntraepithelial lymphocyte030211 gastroenterology & hepatologymedicine.symptombusinessTrypsin Inhibitors

description

Background & Aims Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. Methods C57BL/6 (control), Myd88–/–, Ticam1–/–, and Il15–/– mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. Results In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. Conclusions ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.

10.1053/j.gastro.2019.02.028https://pubmed.ncbi.nlm.nih.gov/30802444