6533b822fe1ef96bd127cec7
RESEARCH PRODUCT
Functional Improvement after Photothrombotic Stroke in Rats Is Associated with Different Patterns of Dendritic Plasticity after G-CSF Treatment and G-CSF Treatment Combined with Concomitant or Sequential Constraint-Induced Movement Therapy
Katrin FrauenknechtPetra LeukelKai DiederichJens MinnerupClemens SommerHenrike BauerWolf-rüdiger SchäbitzWolf-rüdiger Schäbitzsubject
0301 basic medicineMalemedicine.medical_specialtyLightmedicine.medical_treatmentMovement10208 Institute of NeuropathologyIschemialcsh:Medicine610 Medicine & health1100 General Agricultural and Biological Sciences03 medical and health sciences0302 clinical medicine1300 General Biochemistry Genetics and Molecular BiologyInternal medicineNeuroplasticityGranulocyte Colony-Stimulating FactormedicineAnimalscardiovascular diseasesRats Wistarlcsh:ScienceSalineStrokePhysical Therapy Modalities1000 MultidisciplinaryMultidisciplinaryNeuronal Plasticitybusiness.industryPyramidal Cellslcsh:RDendritesRecovery of Functionmedicine.diseaseCombined Modality TherapyCortex (botany)SurgeryGranulocyte colony-stimulating factorConstraint-induced movement therapyStroke030104 developmental biologyEndocrinologyConcomitant570 Life sciences; biologylcsh:Qbusiness030217 neurology & neurosurgeryResearch Articledescription
We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 μg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 μg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-11 | PLoS ONE |