6533b827fe1ef96bd1285797

RESEARCH PRODUCT

First simultaneous measurement of $\Xi^0$ and $\bar{\Xi}^0$ asymmetry parameters in $\psi(3686)$ decay

Besiii CollaborationM. AblikimM. N. AchasovP. AdlarsonR. AlibertiA. AmorosoM. R. AnQ. AnY. BaiO. BakinaI. BalossinoY. BanV. BatozskayaK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiE. BiancoJ. BlomsA. BortoneI. BoykoR. A. BriereA. BrueggemannH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangT. T. ChangW. L. ChangG. R. CheG. ChelkovC. ChenChao ChenG. ChenH. S. ChenM. L. ChenS. J. ChenS. M. ChenT. ChenX. R. ChenX. T. ChenY. B. ChenY. Q. ChenZ. J. ChenW. S. ChengS. K. ChoiX. ChuG. CibinettoS. C. CoenF. CossioJ. J. CuiH. L. DaiJ. P. DaiA. DbeyssiR. E. De BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriB. DingX. X. DingY. DingY. DingJ. DongL. Y. DongM. Y. DongX. DongS. X. DuZ. H. DuanP. EgorovY. L. FanJ. FangS. S. FangW. X. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengK FischerM. FritschC. FritzschC. D. FuY. W. FuH. GaoY. N. GaoYang GaoS. GarbolinoI. GarziaP. T. GeZ. W. GeC. GengE. M. GersabeckA GilmanK. GoetzenL. GongW. X. GongW. GradlS. GramignaM. GrecoM. H. GuY. T. GuC. Y GuanZ. L. GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovX. T. H.W. Y. HanX. Q. HaoF. A. HarrisK. K. HeK. L. HeF. H. HeinsiusC. H. HeinzY. K. HengC. HeroldT. HoltmannP. C. HongG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangK. X. HuangL. Q. HuangX. T. HuangY. P. HuangT. HussainN HüskenW. ImoehlM. IrshadJ. JacksonS. JaegerS. JanchivJ. H. JeongQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiZ. K. JiaP. C. JiangS. S. JiangT. J. JiangX. S. JiangY. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonX. K.S. KabanaN. Kalantar-nayestanakiX. L. KangX. S. KangR. KappertM. KavatsyukB. C. KeA. KhoukazR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuessnerA. KupscW. KühnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziT. T. LeiZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. B. LiH. J. LiH. N. LiHui LiJ. R. LiJ. S. LiJ. W. LiKe LiL. J LiL. K. LiLei LiM. H. LiP. R. LiS. X. LiT. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiY. G. LiZ. J. LiZ. X. LiZ. Y. LiC. LiangH. LiangH. LiangH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyA. LimphiratD. X. LinT. LinB. J. LiuB. X. LiuC. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuG. M. LiuH. LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuKe LiuL. LiuL. C. LiuLu LiuM. H. LiuP. L. LiuQ. LiuS. B. LiuT. LiuW. K. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. G. LuX. L. LuY. LuY. P. LuZ. H. LuC. L. LuoM. X. LuoT. LuoX. L. LuoX. R. LyuY. F. LyuF. C. MaH. L. MaJ. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. Y. MaY. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. G. MesschendorpG. MezzadriH. MiaoT. J. MinR. E. MitchellX. H. MoN. Yu. MuchnoiY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarY. NiuS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakY. P. PeiM. PelizaeusH. P. PengK. PetersJ. L. PingR. G. PingS. PluraS. PogodinV. PrasadF. Z. QiH. QiH. R. QiM. QiT. Y. QiS. QianW. B. QianC. F. QiaoJ. J. QinL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuC. F. RedmerK. J. RenA. RivettiV. RodinM. RoloG. RongCh. RosnerS. N. RuanN. SaloneA. SarantsevY. SchelhaasK. SchoenningM. ScodeggioK. Y. ShanW. ShanX. Y. ShanJ. F. ShangguanL. G. ShaoM. ShaoC. P. ShenH. F. ShenW. H. ShenX. Y. ShenB. A. ShiH. C. ShiJ. L. ShiJ. Y. ShiQ. Q. ShiR. S. ShiX. ShiJ. J. SongT. Z. SongW. M. SongY. J. SongY. X. SongS. SosioS. SpataroF. StielerY. J. SuG. B. SunG. X. SunH. SunH. K. SunJ. F. SunK. SunL. SunS. S. SunT. SunW. Y. SunY. SunY. J. SunY. Z. SunZ. T. SunY. X. TanC. J. TangG. Y. TangJ. TangY. A. TangL. Y TaoQ. T. TaoM. TatJ. X. TengV. ThorenW. H. TianW. H. TianY. TianZ. F. TianI. UmanB. WangB. L. WangBo WangC. W. WangD. Y. WangF. WangH. J. WangH. P. WangK. WangL. L. WangM. WangMeng WangS. WangS. WangT. WangT. J. WangW. WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. J. WangX. L. WangY. WangY. D. WangY. F. WangY. H. WangY. N. WangY. Q. WangYaqian WangYi WangZ. WangZ. L. WangZ. Y. WangZiyi WangD. WeiD. H. WeiF. WeidnerS. P. WenC. W. WenzelU. WiednerG. WilkinsonM. WolkeL. WollenbergC. WuJ. F. WuL. H. WuL. J. WuX. WuX. H. WuY. WuY. J WuZ. WuL. XiaX. M. XianT. XiangD. XiaoG. Y. XiaoH. XiaoS. Y. XiaoY. L. XiaoZ. J. XiaoC. XieX. H. XieY. XieY. G. XieY. H. XieZ. P. XieT. Y. XingC. F. XuC. J. XuG. F. XuH. Y. XuQ. J. XuW. L. XuX. P. XuY. C. XuZ. P. XuF. YanL. YanW. B. YanW. C. YanX. Q YanH. J. YangH. L. YangH. X. YangTao YangY. YangY. F. YangY. X. YangYifan YangZ. W. YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuT. YuX. D. YuC. Z. YuanL. YuanS. C. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarF. R. ZengX. ZengY. ZengY. J. ZengX. Y. ZhaiY. H. ZhanA. Q. ZhangB. L. ZhangB. X. ZhangD. H. ZhangG. Y. ZhangH. ZhangH. H. ZhangH. H. ZhangH. Q. ZhangH. Y. ZhangJ. J. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. X. ZhangJ. Y. ZhangJ. Z. ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangP. ZhangQ. Y. ZhangShuihan ZhangShulei ZhangX. D. ZhangX. M. ZhangX. Y. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. H. ZhangZ. L. ZhangZ. Y. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengW. J. ZhengY. H. ZhengB. ZhongX. ZhongH. ZhouL. P. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouY. Z. ZhouJ. ZhuK. ZhuK. J. ZhuL. ZhuL. X. ZhuS. H. ZhuS. Q. ZhuT. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuJ. H. ZouJ. Zu

subject

High Energy Physics - Experiment

description

The $\Xi^0$ asymmetry parameters are measured using entangled quantum $\Xi^0$-$\bar{\Xi}^0$ pairs from a sample of $(448.1 \pm 2.9) \times 10^6$ $\psi(3686)$ events collected with the BESIII detector at BEPCII. The relative phase between the transition amplitudes of the $\Xi^0 \bar{\Xi}^0$ helicity states is measured to be $\Delta \Phi = -0.050 \pm 0.150 \pm 0.020$~rad, which implies that there is no obvious polarization at the current level of statistics. The decay parameters of the $\Xi^0$ hyperon $(\alpha_{\Xi^0}, \alpha_{\bar{\Xi}^0}, \phi_{\Xi^0}, \phi_{\bar{\Xi}^0})$ and the angular distribution parameter $(\alpha_{\psi(3686)})$ and $\Delta \Phi$ are measured simultaneously for the first time. In addition, the $CP$ asymmetry observables are determined to be $A^{\Xi^0}_{CP} = (\alpha_{\Xi^0} + \alpha_{\bar{\Xi}^0})/(\alpha_{\Xi^0} - \alpha_{\bar{\Xi}^0})$ $= -0.007$ $\pm$ 0.082 $\pm$ 0.025 and $\Delta \phi^{\Xi^0}_{CP} = (\phi_{\Xi^0} + \phi_{\bar{\Xi}^0})/2$ $= -0.079$ $\pm$ 0.082 $\pm$ 0.010 rad, which are consistent with $CP$ conservation.

10.1103/physrevd.108.l011101http://arxiv.org/abs/2302.09767