6533b82ffe1ef96bd1295d8e

RESEARCH PRODUCT

Solanum incanum and S. heteracanthum as sources of biologically active steroid glycosides: Confirmation of their synonymy

Chiaki TanakaMahenina Jaovita ManaseJean François MirjoletTomofumi MiyamotoAnne Claire Mitaine-offerMarie Aleth Lacaille-duboisOlivier DuchampDavid PertuitStéphanie DelemasurePatrick Dutartre

subject

StereochemistryProtodioscinSaponinDiosgeninSolanumSolanaceous AlkaloidsAntioxidantsMicechemistry.chemical_compoundSpecies SpecificityGlycoalkaloidCell Line TumorNeoplasmsDrug DiscoverySpirostansAnimalsHumansSolanum incanumGlycosidesPharmacologychemistry.chemical_classificationSolamargineMolecular StructurebiologyPlant ExtractsGlycosideGeneral MedicineDiosgeninSaponinsbiology.organism_classificationAntineoplastic Agents PhytogenicchemistrySteroidsSolanumPhytotherapy

description

A new spirostanol saponin (1), along with four known saponins, dioscin (2), protodioscin (3), methyl-protodioscin (4), and indioside D (5), and one known steroid glycoalkaloid solamargine (6) were isolated from the two synonymous species, Solanum incanum and S. heteracanthum. The structure of the new saponin was established as (23S,25R)-spirost-5-en-3β,23-diol 3-O-{β-D-xylopyranosyl-(1→2)-O-α-L-rhamnopyranosyl-(1→4)-[O-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside}, by using a combination of 1D and 2D NMR techniques including (1)H, (13)C, COSY, TOCSY, NOESY, HSQC and HMBC experiments and by mass spectrometry. The compounds 1, 3, 4 and 5 were evaluated for cytotoxicity against five cancer cell lines and for antioxidant and cytoprotective activity.

https://doi.org/10.1016/j.fitote.2012.04.024