6533b830fe1ef96bd1297bb0
RESEARCH PRODUCT
CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.
Pavel SpirinAlina BraukmannMirjam RenovanzMarcus EichElla L. KimLuis A. PardoBettina SprangAlonso Barrantes-freerAlf Giesesubject
G2 PhaseCell divisionlcsh:MedicineEpitopeS PhaseFlow cytometryEpitopes03 medical and health sciences0302 clinical medicinefluids and secretionsAntigens CDCell Line TumorGliomamedicineHumansAC133 Antigenlcsh:ScienceneoplasmsGlycoproteins030304 developmental biologychemistry.chemical_classification0303 health sciencesMultidisciplinarybiologymedicine.diagnostic_testlcsh:RGliomaCell cyclemedicine.diseaseCaco-2 cells; Cell cycle and cell division; Cell membranes; Cell staining; DAPI staining; Flow cytometry; Glioma cells; Membrane proteinsTransmembrane proteinCell biologyGene Expression Regulation Neoplasticcarbohydrates (lipids)chemistry030220 oncology & carcinogenesisembryonic structuresNeoplastic Stem Cellsbiology.proteincardiovascular systemlcsh:QCaco-2 CellsAntibodyPeptidesGlycoproteinCell DivisionResearch Articledescription
A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2015-02-17 |