6533b83afe1ef96bd12a77e4

RESEARCH PRODUCT

Measurement of in oscillation using quantum correlations in at

M. AblikimM.n. AchasovX.c. AiO. AlbayrakM. AlbrechtD.j. AmbroseA. AmorosoF.f. AnQ. AnJ.z. BaiR. Baldini FerroliY. BanD.w. BennettJ.v. BennettM. BertaniD. BettoniJ.m. BianF. BianchiE. BogerO. BondarenkoI. BoykoR.a. BriereH. CaiX. CaiO. CakirA. CalcaterraG.f. CaoS.a. CetinJ.f. ChangG. ChelkovG. ChenH.s. ChenH.y. ChenJ.c. ChenM.l. ChenS.j. ChenX. ChenX.r. ChenY.b. ChenH.p. ChengX.k. ChuG. CibinettoD. Cronin-hennessyH.l. DaiJ.p. DaiA. DbeyssiD. DedovichZ.y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingC. DongJ. DongL.y. DongM.y. DongS.x. DuP.f. DuanJ.z. FanJ. FangS.s. FangX. FangY. FangL. FavaF. FeldbauerG. FeliciC.q. FengE. FioravantiM. FritschC.d. FuQ. GaoY. GaoZ. GaoI. GarziaK. GoetzenW.x. GongW. GradlM. GrecoM.h. GuY.t. GuY.h. GuanA.q. GuoL.b. GuoT. GuoY. GuoY.p. GuoZ. HaddadiA. HafnerS. HanY.l. HanF.a. HarrisK.l. HeZ.y. HeT. HeldY.k. HengZ.l. HouC. HuH.m. HuJ.f. HuT. HuY. HuG.m. HuangG.s. HuangH.p. HuangJ.s. HuangX.t. HuangY. HuangT. HussainQ. JiQ.p. JiX.b. JiX.l. JiL.l. JiangL.w. JiangX.s. JiangJ.b. JiaoZ. JiaoD.p. JinS. JinT. JohanssonA. JulinN. Kalantar-nayestanakiX.l. KangX.s. KangM. KavatsyukB.c. KeR. KliemtB. KlossO.b. KolcuB. KopfM. KornicerW. KuehnA. KupscW. LaiJ.s. LangeM. LaraP. LarinC.h. LiCheng LiD.m. LiF. LiG. LiH.b. LiJ.c. LiJin LiK. LiK. LiP.r. LiT. LiW.d. LiW.g. LiX.l. LiX.m. LiX.n. LiX.q. LiZ.b. LiH. LiangY.f. LiangY.t. LiangG.r. LiaoD.x. LinB.j. LiuC.x. LiuF.h. LiuFang LiuFeng LiuH.b. LiuH.h. LiuH.h. LiuH.m. LiuJ. LiuJ.p. LiuJ.y. LiuK. LiuK.y. LiuL.d. LiuP.l. LiuQ. LiuS.b. LiuX. LiuX.x. LiuY.b. LiuZ.a. LiuZhiqiang LiuZhiqing LiuH. LoehnerX.c. LouH.j. LuJ.g. LuR.q. LuY. LuY.p. LuC.l. LuoM.x. LuoT. LuoX.l. LuoM. LvX.r. LyuF.c. MaH.l. MaL.l. MaQ.m. MaS. MaT. MaX.n. MaX.y. MaF.e. MaasM. MaggioraQ.a. MalikY.j. MaoZ.p. MaoS. MarcelloJ.g. MesschendorpJ. MinT.j. MinR.e. MitchellX.h. MoY.j. MoC. Morales MoralesK. MoriyaN.yu. MuchnoiH. MuramatsuY. NefedovF. NerlingI.b. NikolaevZ. NingS. NisarS.l. NiuX.y. NiuS.l. OlsenQ. OuyangS. PacettiP. PatteriM. PelizaeusH.p. PengK. PetersJ.l. PingR.g. PingR. PolingY.n. PuM. QiS. QianC.f. QiaoL.q. QinN. QinX.s. QinY. QinZ.h. QinJ.f. QiuK.h. RashidC.f. RedmerH.l. RenM. RipkaG. RongX.d. RuanV. SantoroA. SarantsevM. SavriéK. SchoenningS. SchumannW. ShanM. ShaoC.p. ShenP.x. ShenX.y. ShenH.y. ShengM.r. ShepherdW.m. SongX.y. SongS. SosioS. SpataroB. SpruckG.x. SunJ.f. SunS.s. SunY.j. SunY.z. SunZ.j. SunZ.t. SunC.j. TangX. TangI. TapanE.h. ThorndikeM. TiemensD. TothM. UllrichI. UmanG.s. VarnerB. WangB.l. WangD. WangD.y. WangK. WangL.l. WangL.s. WangM. WangP. WangP.l. WangQ.j. WangS.g. WangW. WangX.f. WangY.d. WangY.f. WangY.q. WangZ. WangZ.g. WangZ.h. WangZ.y. WangT. WeberD.h. WeiJ.b. WeiP. WeidenkaffS.p. WenU. WiednerM. WolkeL.h. WuZ. WuL.g. XiaY. XiaD. XiaoZ.j. XiaoY.g. XieG.f. XuL. XuQ.j. XuQ.n. XuX.p. XuL. YanW.b. YanW.c. YanY.h. YanH.x. YangL. YangY. YangY.x. YangH. YeM. YeM.h. YeJ.h. YinB.x. YuC.x. YuH.w. YuJ.s. YuC.z. YuanW.l. YuanY. YuanA. YuncuA.a. ZafarA. ZalloY. ZengB.x. ZhangB.y. ZhangC. ZhangC.c. ZhangD.h. ZhangH.h. ZhangH.y. ZhangJ.j. ZhangJ.l. ZhangJ.q. ZhangJ.w. ZhangJ.y. ZhangJ.z. ZhangK. ZhangL. ZhangS.h. ZhangX.y. ZhangY. ZhangY.h. ZhangY.t. ZhangZ.h. ZhangZ.p. ZhangZ.y. ZhangG. ZhaoJ.w. ZhaoJ.y. ZhaoJ.z. ZhaoLei ZhaoLing ZhaoM.g. ZhaoQ. ZhaoQ.w. ZhaoS.j. ZhaoT.c. ZhaoY.b. ZhaoZ.g. ZhaoA. ZhemchugovB. ZhengJ.p. ZhengW.j. ZhengY.h. ZhengB. ZhongL. ZhouLi ZhouX. ZhouX.k. ZhouX.r. ZhouX.y. ZhouK. ZhuK.j. ZhuS. ZhuX.l. ZhuY.c. ZhuY.s. ZhuZ.a. ZhuJ. ZhuangB.s. ZouJ.h. Zou

subject

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilationMeson010308 nuclear & particles physicsOscillationQuantum correlation01 natural sciencesNuclear physicsPion0103 physical sciencesCP violationCoherence (signal processing)High Energy Physics::Experiment010306 general physicsEigenvalues and eigenvectors

description

We report a measurement of the parameter y(CP) in D-0-(D) over bar (0) oscillations performed by taking advantage of quantum coherence between pairs of D-0(D) over bar (0) mesons produced in e(+)e(-) annihilations near threshold. In this work, doubly-tagged D-0(D) over bar (0) events, where one D decays to a CP eigenstate and the other D decays in a semileptonic mode, are reconstructed using a data sample of 2.92 fb(-1) collected with the BESIII detector at the center-of-mass energy of root s = 3.773 GeV. We obtain y(CP) = (-2.0 +/- 1.3 +/- 0.7)%, where the first uncertainty is statistical and the second is systematic. This result is compatible with the current world average.

https://dx.doi.org/10.1016/j.physletb.2015.04.008