0000000000854176
AUTHOR
M.r. Shepherd
Measurement of the D→K−π+ strong phase difference in ψ(3770)→D0D¯0
Abstract We study D 0 D ¯ 0 pairs produced in e + e − collisions at s = 3.773 GeV using a data sample of 2.92 fb−1 collected with the BESIII detector. We measured the asymmetry A K π CP of the branching fractions of D → K − π + in CP-odd and CP-even eigenstates to be ( 12.7 ± 1.3 ± 0.7 ) × 10 − 2 . A K π CP can be used to extract the strong phase difference δ K π between the doubly Cabibbo-suppressed process D ¯ 0 → K − π + and the Cabibbo-favored process D 0 → K − π + . Using world-average values of external parameters, we obtain cos δ K π = 1.02 ± 0.11 ± 0.06 ± 0.01 . Here, the first and second uncertainties are statistical and systematic, respectively, while the third uncertainty arises …
Study of e+e−→pp¯ in the vicinity of ψ(3770)
Using 2917 pb(-1) of data accumulated at 3.773 GeV, 44.5 pb(-1) of data accumulated at 3.65 GeV and data accumulated during a psi(3770) line-shape scan with the BESIII detector, the reaction e(+)e(-) -> p (p) over bar is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e(+)e(-) -> psi(3770) -> p (p) over bar, sigma(e(+)e(-)-> psi(3770) -> p (p) over bar), is found to have two solutions, determined to be (0.059(-0.020)(+0.070) +/- 0.012) pb with the phase angle phi = (255.8(-26.6)(+39.0) +/- 4.8). ( psi(3770) -> p ) = (2.57(-0.13)(+0.12) +/- 0.12) pb with phi = (266.9(-6.3)(+6.1) +/- 0.9)degrees both of which agree with a destructive…
Issues and Opportunities in Exotic HadronsSupported by U.S. Department of Energy (Cohen); the Institute of Modern Physics and Chinese Academy of Sciences under contract Y104160YQ0 and agreement No. 2015-BH-02 (Coito); the U.S. Department of Energy, for grant DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory and DE-SC0006765, Early Career award (Dudek); Fermilab, operated by the Fermi Research Alliance under contract number DEAC02-07CH11359 with the U.S. Department of Energy (Eichten); BMBF, under contract No. 06GI7121, and the DAAD under contract No. 56889822 and by the Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse (Fischer); the German Research Foundation DFG under contract number Collaborative Research Centre CRC-1044 (Gradl); the Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico - CNPq, Grant No. 305894/2009-9 and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Grant No. 2013/01907-0 (Krein); U.S. National Science Foundation, under grants PHY-1068286 and PHY-1403891 (Lebed); the Brazilian National Council for Scientific and Technological Development under grant CNPq/CAPES-208188/2014-2 (Machado); U.S. Department of Energy under grant DE-FG02-05ER41374 (Mitchell); U.S. National Science Foundation under grant PHY-1306805 (Morningstar); U.S. Department of Energy, supported by Jefferson Science Associates, LLC under contract No. DE-AC05-06OR23177 (Pennington); the National Natural Science Foundation of China (NSFC) under contract No. 11575017, the Ministry of Science and Technology of China under Contract No. 2015CB856701 (Shen); U.S. Department of Energy, under grant DE-FG02-05ER41374 (Shepherd); U.S. National Science Foundation under grant PHY-1507572 (Skwarnicki); U.S. Department of Energy, under contract DE-AC05-06OR23177 and grant DE-FG0287ER40365 (Szczepaniak); the National Natural Science Foundation of China (NSFC) under contract numbers 11235011 and 11475187 (Yuan).
The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning h…
Measurement of in oscillation using quantum correlations in at
We report a measurement of the parameter y(CP) in D-0-(D) over bar (0) oscillations performed by taking advantage of quantum coherence between pairs of D-0(D) over bar (0) mesons produced in e(+)e(-) annihilations near threshold. In this work, doubly-tagged D-0(D) over bar (0) events, where one D decays to a CP eigenstate and the other D decays in a semileptonic mode, are reconstructed using a data sample of 2.92 fb(-1) collected with the BESIII detector at the center-of-mass energy of root s = 3.773 GeV. We obtain y(CP) = (-2.0 +/- 1.3 +/- 0.7)%, where the first uncertainty is statistical and the second is systematic. This result is compatible with the current world average.