6533b85ffe1ef96bd12c2783

RESEARCH PRODUCT

Might exogenous circular RNAs act as protein-coding transcripts in plants?

Joan Marquez-molinsJoan Marquez-molinsLuis Cervera SecoJosé Antonio NavarroGustavo GómezVicente Pallás

subject

Protein codingViroid-derived peptidesPlant coding circRNAsvirusesfood and beveragesRNA CircularCell BiologyPlantsBiologyVirus ReplicationPlant pathogenic RNAsViroidsPlant VirusesRegulatory moleculesCell biologyNon canonical transcriptsGene expressionRNA ViralSolanum melongenaPoint of ViewMolecular BiologyCircular RNAsPlant DiseasesArticle Commentary

description

Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as experimental tools to explore the coding potential of plant-circRNAs. Our work supports that the analysed viroids contain putative ORFs able to encode peptides carrying subcellular localization signals coincident with the corresponding replication-specific organelle. Bioassays in well-established hosts revealed that mutations in these ORFs diminish their biological efficiency. Interestingly, circular forms of HSVd and ELVd were found to co-sediment with polysomes, revealing their physical interaction with the translational machinery of the plant cell. Based on this evidence we hypothesize about the possibility that plant circRNAs in general, and viroids in particular, can act, under certain cellular conditions, as non-canonical translatable transcripts.

10.1080/15476286.2021.1962670https://hdl.handle.net/10251/182297