6533b860fe1ef96bd12c39e4

RESEARCH PRODUCT

High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes

Daniel GozalboVíctor VinuesaDavid NavarroRosa OltraM L GilSilvia MadridEstela GiménezAlba MartínezMario SorianoRocío FalcónEliseo Albert

subject

0301 basic medicineMicrobiology (medical)Staphylococcus aureusLysisGenotyping Techniques030106 microbiologyBacteremiaMicrobial Sensitivity TestsBiologymedicine.disease_causeStaphylococcal infectionsMicrobiologyFlow cytometry03 medical and health sciences0302 clinical medicineCell WallVancomycinmedicineHumansPharmacology (medical)030212 general & internal medicineMinimum inhibitory concentration (MIC)EtestPhagocytesCell wall thicknessMicrobial Viabilitymedicine.diagnostic_testGeneral MedicineHuman phagocytesStaphylococcal InfectionsFlow CytometryMicroarray Analysismedicine.diseaseEndocytosisAnti-Bacterial AgentsIntracellular killingInfectious DiseasesStaphylococcus aureusBacteremiaVancomycinIntracellularmedicine.drug

description

Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index 70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. (C) 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

https://doi.org/10.1016/j.ijantimicag.2016.01.014