6533b861fe1ef96bd12c4667

RESEARCH PRODUCT

Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus

Vincenzo CavalieriF ArdizzoneCarlotta De FilippoGiovanni SpinelliE. PalazzottoT. FaddettaFrancesca FaillaciChiara ReinaGiuseppe GalloFrancesco StratiAnna Maria Puglia

subject

0301 basic medicineDNA BacterialScience030106 microbiologyPopulationZoologySettore BIO/11 - Biologia MolecolareMicrobial communitiesSettore BIO/19 - Microbiologia GeneraleDNA RibosomalMicrobiologyParacentrotus lividusArticlemicrobiota sea urchin coelomic fluidsea urchin03 medical and health sciencesbiology.animalRNA Ribosomal 16SmicrobiotaAnimalseducationSea urchinPhylogenyeducation.field_of_studyBacteriological TechniquesMultidisciplinarybiologyBacteriaQRBacteroidetesHigh-Throughput Nucleotide SequencingFusobacteriaMarine invertebratesSequence Analysis DNAbiology.organism_classificationcoelomic fuid030104 developmental biologyEchinodermParacentrotus lividusParacentrotusMedicineProteobacteria

description

AbstractIn the present work, culture-based and culture-independent investigations were performed to determine the microbiota structure of the coelomic fluid of Mediterranean sea urchin Paracentrotus lividus individuals collected from two distinct geographical sites neighboring a high-density population bay and a nature reserve, respectively. Next Generation Sequencing analysis of 16S rRNA gene (rDNA) showed that members of the Proteobacteria, Bacteroidetes and Fusobacteria phyla, which have been previously reported to be commonly retrieved from marine invertebrates, dominate the overall population of microorganisms colonizing this liquid tissue, with minority bacterial genera exhibiting remarkable differences among individuals. Our results showed that there is a correlation between microbiota structure and geographical location of the echinoderm collection site, highlighting over-representation of metagenomic functions related to amino acid and bioactive peptides metabolism in specimens inhabiting the nature reserve. Finally, we also described the developmental delay and aberrations exhibited by sea urchin embryos exposed to distinct bacterial isolates, and showed that these defects rely upon hydrophilic compound(s) synthesized by the bacterial strains assayed. Altogether, our findings lay the groundwork to decipher the relationships of bacteria with sea urchins in their aquatic environment, also providing an additional layer of information to understand the biological roles of the coelomic fluid.

10.1038/s41598-020-78534-5http://hdl.handle.net/10281/344796