6533b861fe1ef96bd12c4676
RESEARCH PRODUCT
3 ′-5 ′ crosstalk contributes to transcriptional bursting
Mark D. WalshMassimo CavallaroBärbel FinkenstädtMatt JonesSimone TiberiDaniel HebenstreitJames Teahansubject
lcsh:QH426-470TransgeneParameter inference03 medical and health sciences0302 clinical medicineTranscription (biology)Gene expressionmedicineCompartment (development)QAlcsh:QH301-705.5GenePolymerase030304 developmental biologyTranscriptional burstingMessenger RNA0303 health sciencesMathematical modellingbiologyQHCell cyclemedicine.diseaseCell biologyLiquid-liquid phase separationlcsh:GeneticsCrosstalk (biology)lcsh:Biology (General)Biological noisebiology.proteinGene expressionGene looping030217 neurology & neurosurgeryTranscriptional noisedescription
Abstract Background Transcription in mammalian cells is a complex stochastic process involving shuttling of polymerase between genes and phase-separated liquid condensates. It occurs in bursts, which results in vastly different numbers of an mRNA species in isogenic cell populations. Several factors contributing to transcriptional bursting have been identified, usually classified as intrinsic, in other words local to single genes, or extrinsic, relating to the macroscopic state of the cell. However, some possible contributors have not been explored yet. Here, we focus on processes at the 3 ′ and 5 ′ ends of a gene that enable reinitiation of transcription upon termination. Results Using Bayesian methodology, we measure the transcriptional bursting in inducible transgenes, showing that perturbation of polymerase shuttling typically reduces burst size, increases burst frequency, and thus limits transcriptional noise. Analysis based on paired-end tag sequencing (PolII ChIA-PET) suggests that this effect is genome wide. The observed noise patterns are also reproduced by a generative model that captures major characteristics of the polymerase flux between the ends of a gene and a phase-separated compartment. Conclusions Interactions between the 3 ′ and 5 ′ ends of a gene, which facilitate polymerase recycling, are major contributors to transcriptional noise.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-09 | Genome Biology |