6533b871fe1ef96bd12d1a46

RESEARCH PRODUCT

Loss‐of‐function variants in ARHGEF9 are associated with an X‐linked intellectual disability dominant disorder

Laurence CuissetStéphane BézieauFlora BreheretChristel Thauvin-robinetPaul KuentzBenjamin CognéGaëlle Landeau-trottierBoris KerenEva TrochuLeila GheshMathilde NizonChristine CoubesThomas BesnardCyril MignotAnge-line Bruel

subject

MaleX-linked intellectual disabilitymedia_common.quotation_subjectNonsenseMutation MissenseBiology03 medical and health sciencesGenes X-LinkedX Chromosome InactivationIntellectual DisabilityIntellectual disabilityGeneticsmedicineHumansMissense mutationGenetics (clinical)Loss function030304 developmental biologymedia_commonGenetics0303 health sciences030305 genetics & hereditymedicine.diseaseCodon NonsenseRNA splicingFemaleRho Guanine Nucleotide Exchange Factors

description

ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females.

https://doi.org/10.1002/humu.24188