6533b871fe1ef96bd12d1bd3
RESEARCH PRODUCT
“Mitotic Slippage” and Extranuclear DNA in Cancer Chemoresistance: A Focus on Telomeres
Inna InashkinaJekaterina ErenpreisaNinel M. VainshelbaumNinel M. VainshelbaumDace PjanovaPetar PodlesniyMagdalena DudkowskaEwa SikoraKarolina StaniakFelikss RumnieksFelikss RumnieksKristine SalminaAgnieszka Bojkosubject
PolyploidizationALTSQSTM1/p62lcsh:ChemistryNeoplasmsSequestosome-1 Proteincellular senescenceTelomeric Repeat Binding Protein 2mtTP53 cancerTelomeraseAmoeboid conversionlcsh:QH301-705.5Telomere ShorteningSpectroscopyAntibiotics AntineoplasticGeneral MedicineTelomereComputer Science ApplicationsCell biologyinverted meiosisExtranuclear DNA<i>mtTP53</i> cancerSpo11DNA repairTelomere CappingMitosisBudding of mitotic progenygenotoxic treatmentamoeboid conversionInverted meiosisBiologyCellular senescenceArticleCatalysisInorganic ChemistryMeiosisCell Line Tumorextranuclear DNAHumansTelomerase reverse transcriptasePhysical and Theoretical ChemistryMolecular BiologyMitosisCell ProliferationGenotoxic treatmentOrganic ChemistryRecombinational DNA RepairCell Cycle CheckpointsDNA<i>SQSTM1/p62</i>polyploidizationTelomerelcsh:Biology (General)lcsh:QD1-999DoxorubicinDrug Resistance Neoplasmbiology.proteinHomologous recombinationbudding of mitotic progenyDNA Damagedescription
Mitotic slippage (MS), the incomplete mitosis that results in a doubled genome in interphase, is a typical response of TP53-mutant tumors resistant to genotoxic therapy. These polyploidized cells display premature senescence and sort the damaged DNA into the cytoplasm. In this study, we explored MS in the MDA-MB-231 cell line treated with doxorubicin (DOX). We found selective release into the cytoplasm of telomere fragments enriched in telomerase reverse transcriptase (hTERT), telomere capping protein TRF2, and DNA double-strand breaks marked by γH2AX, in association with ubiquitin-binding protein SQSTM1/p62. This occurs along with the alternative lengthening of telomeres (ALT) and DNA repair by homologous recombination (HR) in the nuclear promyelocytic leukemia (PML) bodies. The cells in repeated MS cycles activate meiotic genes and display holocentric chromosomes characteristic for inverted meiosis (IM). These giant cells acquire an amoeboid phenotype and finally bud the depolyploidized progeny, restarting the mitotic cycling. We suggest the reversible conversion of the telomerase-driven telomere maintenance into ALT coupled with IM at the sub-telomere breakage sites introduced by meiotic nuclease SPO11. All three MS mechanisms converging at telomeres recapitulate the amoeba-like agamic life-cycle, decreasing the mutagenic load and enabling the recovery of recombined, reduced progeny for return into the mitotic cycle.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-16 | International Journal of Molecular Sciences |