6533b873fe1ef96bd12d554c
RESEARCH PRODUCT
Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment
Albert AnsmannMatthias WiegnerMatthias TeschePatric SeifertOleg DubovikPeter KnippertzDietrich AlthausenVolker FreudenthalerG. PisaniDetlef MüllerBirgit Heesesubject
Atmospheric ScienceVirgaEcologyIce crystalsCloud topCloud seedingPaleontologySoil ScienceForestryAquatic ScienceMineral dustOceanographyAtmospheric sciencesGeophysicsSpace and Planetary ScienceGeochemistry and PetrologySea ice thicknessEarth and Planetary Sciences (miscellaneous)Ice nucleusEnvironmental scienceWater vaporEarth-Surface ProcessesWater Science and Technologydescription
[1] Multiwavelength lidar, Sun photometer, and radiosonde observations were conducted at Ouarzazate (30.9°N, 6.9°W, 1133 m above sea level, asl), Morocco, in the framework of the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006. The field site is close to the Saharan desert. Information on the depolarization ratio, backscatter and extinction coefficients, and lidar ratio of the dust particles, estimates of the available concentration of atmospheric ice nuclei at cloud level, profiles of temperature, humidity, and the horizontal wind vector as well as backward trajectory analysis are used to study cases of cloud formation in the dust with focus on heterogeneous ice formation. Surprisingly, most of the altocumulus clouds that form at the top of the Saharan dust layer, which reaches into heights of 4–7 km asl and has layer top temperatures of −8°C to −18°C, do not show any ice formation. According to the lidar observations the presence of a high number of ice nuclei (1–20 cm−3) does not automatically result in the obvious generation of ice particles, but the observations indicate that cloud top temperatures must typically reach values as low as −20°C before significant ice production starts. Another main finding is that liquid clouds are obviously required before ice crystals form via heterogeneous freezing mechanisms, and, as a consequence, that deposition freezing is not an important ice nucleation process. An interesting case with cloud seeding in the free troposphere above the dust layer is presented in addition. Small water clouds formed at about −30°C and produced ice virga. These virga reached water cloud layers several kilometers below the initiating cloud cells and caused strong ice production in these clouds at temperatures as high as −12°C to −15°C.
year | journal | country | edition | language |
---|---|---|---|---|
2008-02-27 | Journal of Geophysical Research |