Search results for " Brain."

showing 10 items of 976 documents

Confirmation of PDZD7 as a Nonsyndromic Hearing Loss Gene.

2016

Objective PDZD7 was identified in 2009 in a family with apparent nonsyndromic sensorineural hearing loss. However, subsequent clinical reports have associated PDZD7 with digenic Usher syndrome, the most common cause of deaf-blindness, or as a modifier of retinal disease. No further reports have validated this gene for nonsyndromic hearing loss, intuitively calling correct genotype-phenotype association into question. This report describes a validating second case for biallelic mutations in PDZD7 causing nonsyndromic mild to severe sensorineural hearing loss. It also provides detailed audiometric and ophthalmologic data excluding Usher syndrome in both the present proband (proband 1) and the…

0301 basic medicineProbandMalemedicine.medical_specialtyHeterozygoteAdolescentHearing lossUsher syndromeHearing Loss SensorineuralOtoacoustic Emissions SpontaneousAudiologyCompound heterozygosity03 medical and health sciencesSpeech and Hearing0302 clinical medicineotorhinolaryngologic diseasesmedicineEvoked Potentials Auditory Brain StemHumansGenetic Predisposition to DiseaseChildAllelesmedicine.diagnostic_testbusiness.industryAudiogramSequence Analysis DNAmedicine.diseaseMinor allele frequency030104 developmental biologyOtorhinolaryngologyMutationAudiometry Pure-ToneSensorineural hearing lossFemaleAudiometrymedicine.symptombusinessCarrier Proteins030217 neurology & neurosurgeryEar and hearing
researchProduct

On the structural connectivity of large-scale models of brain networks at cellular level

2021

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the …

0301 basic medicineProcess (engineering)Computer scienceScienceModels NeurologicalCellular levelMachine learningcomputer.software_genreArticle03 medical and health sciencesComputational biophysics0302 clinical medicineSettore MAT/05 - Analisi MatematicamedicineBiological neural networkHumansSettore MAT/07 - Fisica MatematicaOn the structural connectivity of large-scale models of brain networks at cellular levelSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeuronsMultidisciplinaryNetwork modelsSettore INF/01 - Informaticabusiness.industryQRProbabilistic logicBrain030104 developmental biologymedicine.anatomical_structureMathematical framework Neuron networks Large‑scale model Data‑driven probabilistic rules Modeling cellular-level brain networksMedicineNeuronArtificial intelligencebusinessScale modelcomputer030217 neurology & neurosurgeryScientific Reports
researchProduct

Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mit…

2016

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomi…

0301 basic medicineProgrammed cell deathKainic acidTransgenebcl-X ProteinPeroxisome proliferator-activated receptorBiologyInhibitor of apoptosisSettore BIO/09 - FisiologiaNeuroprotectionOxidative PhosphorylationInhibitor of Apoptosis ProteinsMice03 medical and health scienceschemistry.chemical_compoundXIAP0302 clinical medicineBrain InjurieInhibitor of Apoptosis ProteinAnimalsCA1 Region HippocampalCells CulturedNeuronschemistry.chemical_classificationNeuroscience (all)Kainic AcidCell DeathAnimalNeuron survivalGeneral NeuroscienceProteomicXIAP; Kainic acid; Mitochondria; Neuron survival; PGC-1α; Proteomics; Animals; Brain Injuries; CA1 Region Hippocampal; Cell Death; Cells Cultured; Inhibitor of Apoptosis Proteins; Kainic Acid; Mice; Mitochondria; Neurons; Oxidative Phosphorylation; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Proto-Oncogene Proteins c-bcl-2; bcl-X Protein; Neuroscience (all)NeuronPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaCell biologyXIAP030104 developmental biologyProto-Oncogene Proteins c-bcl-2chemistryMitochondrial biogenesisBrain InjuriesImmunologyPGC-1α030217 neurology & neurosurgeryEuropean Journal of Neuroscience
researchProduct

A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees

2017

Background: To know the ability of a compound to penetrate the blood-brain barrier (BBB) is a challenging task; despite the numerous efforts realized to predict/measure BBB passage, they still have several drawbacks. Methods: The prediction of the permeability through the BBB is carried out using classification trees. A large data set of 497 compounds (recently published) is selected to develop the tree model. Results: The best model shows an accuracy higher than 87.6% for training set; the model was also validated using 10-fold cross-validation procedure and through a test set achieving accuracy values of 86.1% and 87.9%, correspondingly. We give a brief explanation, in structural terms, o…

0301 basic medicineQuantitative structure–activity relationshipComputer scienceDatasets as TopicQuantitative Structure-Activity Relationshipcomputer.software_genre01 natural sciencesPermeability03 medical and health sciencesMolecular descriptorDrug DiscoveryInternational literatureComputer SimulationTraining setDecision tree learningDecision Trees0104 chemical sciences010404 medicinal & biomolecular chemistry030104 developmental biologyPharmaceutical PreparationsBlood-Brain BarrierTest setData miningBlood brain barrier permeabilitycomputerAlgorithmsDecision tree modelMedicinal Chemistry
researchProduct

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

2018

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-contai…

0301 basic medicineRHOAanimal structuresventricular-subventricular zoneBiology03 medical and health sciences0302 clinical medicinegait behaviorNeuroblastCell MovementNeuroblast migrationLateral VentriclesGeneticsmedicineAnimalsreproductive and urinary physiologyN-cadherinNeuronsneuronal migrationneuronal regenerationneonatal brain injuryCadherinEmbryogenesisfungiCell Biologypostnatal neurogenesisRecovery of FunctionCadherinsEmbryonic stem cellNeural stem cellRadial glial cell030104 developmental biologymedicine.anatomical_structurenervous systemAnimals NewbornBrain Injuriesbiology.proteinMolecular MedicinerhoA GTP-Binding ProteinNeuroscienceNeuroglia030217 neurology & neurosurgeryradial glial cellCell stem cell
researchProduct

Complexity analysis of cortical surface detects changes in future Alzheimer's disease converters

2017

Alzheimer's disease (AD) is a neurological disorder that creates neurodegenerative changes at several structural and functional levels in human brain tissue. The fractal dimension (FD) is a quantitative parameter that characterizes the morphometric variability of the human brain. In this study, we investigate spherical harmonic-based FD (SHFD), thickness, and local gyrification index (LGI) to assess whether they identify cortical surface abnormalities toward the conversion to AD. We study 33 AD patients, 122 mild cognitive impairment (MCI) patients (50 MCI converters and 29 MCI nonconverters), and 32 healthy controls (HC). SHFD, thickness, and LGI methodology allowed us to perform not only …

0301 basic medicineRadiological and Ultrasound TechnologyDiseaseNeurological disorderHuman brainEntorhinal cortexmedicine.diseasebehavioral disciplines and activitiesTemporal lobeWhite matter03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structureNeurologyFrontal lobemental disordersmedicineRadiology Nuclear Medicine and imagingNeurology (clinical)AnatomyPsychologyGyrificationNeuroscience030217 neurology & neurosurgeryHuman Brain Mapping
researchProduct

Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles

2017

Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of mol…

0301 basic medicineReviewCatalysislcsh:Chemistryextracellular RNAsInorganic ChemistryExtracellular matrixExtracellular Vesicles03 medical and health sciencesGliomaSettore BIO/10 - BiochimicaParenchymamedicineExtracellularAnimalsHumansNeoplasm InvasivenessPhysical and Theoretical ChemistrySettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5Molecular BiologySpectroscopychemistry.chemical_classificationECMBrain Neoplasmsbrain cancer invasionOrganic ChemistryCancerGliomaGeneral MedicineMetabolismmedicine.diseaseExtracellular MatrixComputer Science ApplicationsCell biologyglioma cell030104 developmental biologyEnzymeglioma cells; brain cancer invasion; extracellular vesicles (EVs); ECM; extracellular RNAslcsh:Biology (General)lcsh:QD1-999chemistryglioma cellsextracellular vesicles (EVs)Intracellular
researchProduct

Retrieving infinite numbers of patterns in a spin-glass model of immune networks

2013

The similarity between neural and immune networks has been known for decades, but so far we did not understand the mechanism that allows the immune system, unlike associative neural networks, to recall and execute a large number of memorized defense strategies {\em in parallel}. The explanation turns out to lie in the network topology. Neurons interact typically with a large number of other neurons, whereas interactions among lymphocytes in immune networks are very specific, and described by graphs with finite connectivity. In this paper we use replica techniques to solve a statistical mechanical immune network model with `coordinator branches' (T-cells) and `effector branches' (B-cells), a…

0301 basic medicineSimilarity (geometry)Spin glassComputer sciencestatistical mechanicFOS: Physical sciencesGeneral Physics and AstronomyNetwork topologyTopology01 natural sciencesQuantitative Biology::Cell Behavior03 medical and health sciencesCell Behavior (q-bio.CB)0103 physical sciencesattractor neural-networks; statistical mechanics; brain networks; Physics and Astronomy (all)Physics - Biological Physics010306 general physicsAssociative propertybrain networkArtificial neural networkMechanism (biology)ErgodicityDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksAcquired immune system030104 developmental biologyBiological Physics (physics.bio-ph)FOS: Biological sciencesattractor neural-networkQuantitative Biology - Cell Behavior
researchProduct

Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy

2017

Fasting reduces glucose levels and protects mice against chemotoxicity, yet drugs that promote hyperglycemia are widely used in cancer treatment. Here, we show that dexamethasone (Dexa) and rapamycin (Rapa), commonly administered to cancer patients, elevate glucose and sensitize cardiomyocytes and mice to the cancer drug doxorubicin (DXR). Such toxicity can be reversed by reducing circulating glucose levels by fasting or insulin. Furthermore, glucose injections alone reversed the fasting-dependent protection against DXR in mice, indicating that elevated glucose mediates, at least in part, the sensitizing effects of rapamycin and dexamethasone. In yeast, glucose activates protein kinase A (P…

0301 basic medicineTime FactorsImmunology and Microbiology (all)Peptide Hormonesmedicine.medical_treatmentAMP-Activated Protein KinasesToxicologyPathology and Laboratory MedicineBiochemistryDexamethasoneMiceEndocrinologyAMP-activated protein kinaseAtrial natriuretic peptideNatriuretic Peptide BrainMedicine and Health SciencesNatriuretic peptideInsulinSmall interfering RNAsBiology (General)Statistical DatabiologyOrganic CompoundsGeneral NeuroscienceMonosaccharidesHeartFastingMetformin3. Good healthMetforminNucleic acidsChemistryPhysical SciencesFemaleAnatomyGeneral Agricultural and Biological SciencesStatistics (Mathematics)Atrial Natriuretic FactorResearch Articlemedicine.drugmedicine.medical_specialtyQH301-705.5medicine.drug_classCarbohydratesEGR1Antineoplastic AgentsCardiotoxinsGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNatriuretic PeptideStress PhysiologicalInternal medicineGeneticsmedicineAnimalsNon-coding RNAProtein kinase AEarly Growth Response Protein 1Diabetic EndocrinologyNeuroscience (all)Biochemistry Genetics and Molecular Biology (all)Biology and life sciencesToxicityGeneral Immunology and MicrobiologyInsulinOrganic ChemistryChemical CompoundsCorrectionAMPKCyclic AMP-Dependent Protein KinasesHormonesGene regulationDietAtrial Natriuretic PeptideMice Inbred C57BLNeuroscience (all); Immunology and Microbiology (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)Glucose030104 developmental biologyEndocrinologyAgricultural and Biological Sciences (all)CytoprotectionMetabolic DisordersHyperglycemiaCardiovascular Anatomybiology.proteinRNAGene expressionMathematicsPLOS Biology
researchProduct

Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications.

2020

Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed…

0301 basic medicineTraumatic brain injurymedicine.medical_treatmentReviewlcsh:RC346-42903 medical and health sciences0302 clinical medicinemedicineReach to grasphumanNeurostimulationAcquired brain injuryNeurorehabilitationlcsh:Neurology. Diseases of the nervous systemTranscranial direct-current stimulationreach-and-graspbusiness.industrytraumatic brain injuryrodentmedicine.diseasestrokeTranscranial magnetic stimulation030104 developmental biologyNeurologyBrain stimulationneuromodulationNeurology (clinical)businessNeuroscience030217 neurology & neurosurgeryFrontiers in neurology
researchProduct