Search results for " Codimension"
showing 10 items of 33 documents
On algebras of polynomial codimension growth
2016
Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.
Star-polynomial identities: computing the exponential growth of the codimensions
2017
Abstract Can one compute the exponential rate of growth of the ⁎-codimensions of a PI-algebra with involution ⁎ over a field of characteristic zero? It was shown in [2] that any such algebra A has the same ⁎-identities as the Grassmann envelope of a finite dimensional superalgebra with superinvolution B. Here, by exploiting this result we are able to provide an exact estimate of the exponential rate of growth e x p ⁎ ( A ) of any PI-algebra A with involution. It turns out that e x p ⁎ ( A ) is an integer and, in case the base field is algebraically closed, it coincides with the dimension of an admissible subalgebra of maximal dimension of B.
Matrix algebras of polynomial codimension growth
2007
We study associative algebras with unity of polynomial codimension growth. For any fixed degree $k$ we construct associative algebras whose codimension sequence has the largest and the smallest possible polynomial growth of degree $k$. We also explicitly describe the identities and the exponential generating functions of these algebras.
An almost nilpotent variety of exponent 2
2013
We construct a non-associative algebra A over a field of characteristic zero with the following properties: if V is the variety generated by A, then V has exponential growth but any proper subvariety of V is nilpotent. Moreover, by studying the asymptotics of the sequence of codimensions of A we deduce that exp(V) = 2.
On almost nilpotent varieties of subexponential growth
2015
Abstract Let N 2 be the variety of left-nilpotent algebras of index two, that is the variety of algebras satisfying the identity x ( y z ) ≡ 0 . We introduce two new varieties, denoted by V sym and V alt , contained in the variety N 2 and we prove that V sym and V alt are the only two varieties almost nilpotent of subexponential growth.
Proper identities, Lie identities and exponential codimension growth
2008
Abstract The exponent exp ( A ) of a PI-algebra A in characteristic zero is an integer and measures the exponential rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev, Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243]. In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to t…
Classifying G-graded algebras of exponent two
2019
Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …
Differential Identities and Varieties of Almost Polynomial Growth
2022
Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on them by derivations, and let c(n)(L) (V), n >= 1, be its Lcodimension sequence. If V is generated by a finite-dimensional L-algebra, then such a sequence is polynomially bounded only if V does not contain UT2, the 2 x 2 upper triangular matrix algebra with trivial L-action, and UT2 epsilon where L acts on UT2 as the 1-dimensional Lie algebra spanned by the inner derivation epsilon induced by e11. In this paper we completely classify all the L-subvarieties of var(L)(UT2) and var(L)(UT2 epsilon) by giving a complete list of finite-dimensional L-algebras generating them.
On codimension growth of finite-dimensional Lie superalgebras
2012
Codimensions of algebras and growth functions
2008
Abstract Let A be an algebra over a field F of characteristic zero and let c n ( A ) , n = 1 , 2 , … , be its sequence of codimensions. We prove that if c n ( A ) is exponentially bounded, its exponential growth can be any real number >1. This is achieved by constructing, for any real number α > 1 , an F-algebra A α such that lim n → ∞ c n ( A α ) n exists and equals α. The methods are based on the representation theory of the symmetric group and on properties of infinite Sturmian and periodic words.