Search results for " Detector"
showing 10 items of 2719 documents
Digital performance improvements of a CdTe pixel detector for high flux energy-resolved X-ray imaging
2015
Abstract Photon counting detectors with energy resolving capabilities are desired for high flux X-ray imaging. In this work, we present the performance of a pixelated Schottky Al/p-CdTe/Pt detector (4×4) coupled to a custom-designed digital readout electronics for high flux measurements. The detector (4×4×2 mm 3 ) has an anode layout based on an array of 16 pixels with a geometric pitch of 1 mm (pixel size of 0.6 mm). The 4-channel readout electronics is able to continuously digitize and process the signals from each pixel, performing multi-parameter analysis (event arrival time, pulse shape, pulse height, pulse time width, etc.) even at high fluxes and at different throughput and energy re…
Sterile neutrinos in the 3+s scenario and solar data
2013
The flatness of the SuperKamiokande neutrino electron scattering spectrum and the apparent downturn of the charged current spectrum in the SNO data which the Large Mixing Angle solution (LMA) to the solar neutrino problem fails to predict are analysed in the context of an extension to the standard electroweak model with light sterile neutrinos. It is found that a sterile neutrino which is quasi degenerate with the active ones with $\Delta m^2_{41}=10^{-5}eV^2$ and mixing $sin\theta_{14}=0.04$ provides a suitable improvement to the LMA data fits.
Pulsar Velocities without Neutrino Mass
1998
We show that pulsar velocities may arise from anisotropic neutrino emission induced by resonant conversions of massless neutrinos in the presence of a strong magnetic field. The main ingredient is a small violation of weak universality and neither neutrino masses nor magnetic moments are required.
Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC
2019
Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 × 50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…
The ATLAS Level-1 Calorimeter Trigger: PreProcessor implementation and performance
2012
The PreProcessor system of the ATLAS Level-1 Calorimeter Trigger (L1Calo) receives about 7200 analogue signals from the electromagnetic and hadronic components of the calorimetric detector system. Lateral division results in cells which are pre-summed to so-called Trigger Towers of size 0.1 × 0.1 along azimuth (phi) and pseudorapidity (η). The received calorimeter signals represent deposits of transverse energy. The system consists of 124 individual PreProcessor modules that digitise the input signals for each LHC collision, and provide energy and timing information to the digital processors of the L1Calo system, which identify physics objects forming much of the basis for the full ATLAS fi…
Cubic boron nitride: A new prospective material for ultracold neutron application
2009
Abstract At the ultracold neutron (UCN) source of the TRIGA research reactor in Mainz, we have measured for the first time the material optical wall-potential of cubic boron nitride. The measurements were performed with a time-of-flight (TOF) spectrometer. The samples investigated had a wall-potential of ( 305 ± 15 ) neV . This value is in good agreement with the result extracted from neutron reflectometry data and theoretical expectations. Because of its high critical velocity for UCN and its good dielectric characteristics, cubic boron nitride coatings (isotopically enriched) will be useful for a number of applications in UCN experiments.
Polarization phenomena in Al/p-CdTe/Pt X-ray detectors
2013
Over the last decades, CdTe detectors are widely used for the development of room temperature X-ray and gamma ray spectrometers. Typically, high resolution CdTe detectors are fabricated with blocking contacts (indium, aluminum) ensuring low leakage currents and high electric field for optimum charge collection. As well known, time instability under bias voltage (termed as polarization) is the major drawback of CdTe diode detectors. Polarization phenomena cause a progressive degradation of the spectroscopic performance with time, due to hole trapping and detrapping from deep acceptors levels. In this work, we studied the polarization phenomenon on new Al/p-CdTe/Pt detectors, manufactured by …
Crystal growth of Hg1−xMnxSe for infrared detection
2007
In this work, we report on the successfully growing Hg"1"-"xMn"xSe bulk crystals using a mixed, travelling heater method and Bridgman method, two-step procedure. Firstly, and with the aim of reducing Hg high pressure related to the high temperature synthesis reaction between the components in elemental form, HgSe crystals were synthesized and grown by the cold travelling heater method. Secondly, previously sublimated Mn and Se were incorporated to complete the desired composition. Then, the Bridgman growth was carried out by heating the alloy at a temperature of about 880^oC and lowering it at rate of 1mm/h through a gradient of 25^oC/cm. The Hg"1"-"xMn"xSe crystals were characterized by sc…
A Very Large Area Telescope for γ-Ray Astronomy Above 100 MeV Employing Limited Streamer Tubes
1994
A new detector for γ-ray astronomy above 100 MeV is described in which the electron-positron pairs are tracked by means of a set of plane arrays of Limited Streamer Tubes. This technique allows to build up very large area experiments which are specifically useful to study variable or transient sources.
A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector
2015
We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single π0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV . They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS.