Search results for " Graphical Models"
showing 10 items of 13 documents
Dynamic Gaussian Graphical Models for Modelling Genomic Networks
2014
After sequencing the entire DNA for various organisms, the challenge has become understanding the functional interrelatedness of the genome. Only by understanding the pathways for various complex diseases can we begin to make sense of any type of treatment. Unfortunately, decyphering the genomic network structure is an enormous task. Even with a small number of genes the number of possible networks is very large. This problem becomes even more difficult, when we consider dynamical networks. We consider the problem of estimating a sparse dynamic Gaussian graphical model with \(L_1\) penalized maximum likelihood of structured precision matrix. The structure can consist of specific time dynami…
What should I do next? Using shared representations to solve interaction problems
2011
Studies on how “the social mind” works reveal that cognitive agents engaged in joint actions actively estimate and influence another’s cognitive variables and form shared representations with them. (How) do shared representations enhance coordination? In this paper, we provide a probabilistic model of joint action that emphasizes how shared representations help solving interaction problems. We focus on two aspects of the model. First, we discuss how shared representations permit to coordinate at the level of cognitive variables (beliefs, intentions, and actions) and determine a coherent unfolding of action execution and predictive processes in the brains of two agents. Second, we discuss th…
Dynamic factorial graphical models for dynamic networks
2014
Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. Estimating dynamic networks from noisy time series data is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is typically larger than the number of observations. However, a characteristic of many real life networks is that they are sparse. For example, the molec- ular structure of genes make interactions with other components a highly-structured and, therefore, a sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. H…
Cyclic coordinate for penalized Gaussian graphical models with symmetry restriction
2014
In this paper we propose two efficient cyclic coordinate algorithms to estimate structured concentration matrix in penalized Gaussian graphical models. Symmetry restrictions on the concentration matrix are particularly useful to reduce the number of parameters to be estimated and to create specific structured graphs. The penalized Gaussian graphical models are suitable for high-dimensional data.
A computational method to estimate sparse multiple Gaussian graphical models
2012
In recent years several researchers have proposed the use of the Gaussian graphical model defined on a high dimensional setting to explore the dependence relationships between random variables. Standard methods, usually proposed in literature, are based on the use of a specific penalty function, such as the L1-penalty function. In this paper our aim is to estimate and compare two or more Gaussian graphical models defined in a high dimensional setting. In order to accomplish our aim, we propose a new computational method, based on glasso method, which lets us to extend the notion of p-value.
Genetic Network construction in CML gene expression profile data analysis
2009
Aim of this paper is to define a new statistical framework to identify central modules in Gaussian Graphical Models (GGMs) estimated by gene expression data measured on a sample of patients with negative molecular response to imatinib. A central module is defined as a module of a GGM which contains genes that are defined differentially expressed.
Graphical models for estimating dynamic networks
2012
Het bepalen van dynamische netwerken met behulp van data is een actief onderzoeksgebied, met name in de systeem biologie. Het schatten van de structuur van een netwerk heeft te maken met het bepalen van de aan of afwezigheid van een relatie tussen de hoekpunten in de graaf. Grafische modellen definiëren deze relaties via conditionele afhankelijkheid. In Gaussiaanse grafische modellen (GGM) wordt verondersteld dat de hoekpunten een normale verdeling volgen. Dit heeft grote voordelen vanwege de computationele handelbaarheid van GGM. Standaard GGM zijn echter niet bruikbaar om grote netwerken te bestuderen, i.e. als het aantal waarnemingen minder is dan het aantal hoekpunten van de graaf. Rece…
Inferring networks from high-dimensional data with mixed variables
2014
We present two methodologies to deal with high-dimensional data with mixed variables, the strongly decomposable graphical model and the regression-type graphical model. The first model is used to infer conditional independence graphs. The latter model is applied to compute the relative importance or contribution of each predictor to the response variables. Recently, penalized likelihood approaches have also been proposed to estimate graph structures. In a simulation study, we compare the performance of the strongly decomposable graphical model and the graphical lasso in terms of graph recovering. Five different graph structures are used to simulate the data: the banded graph, the cluster gr…
Identifying modularity structure of a genetic network in gene expression profile data
2009
Aim of this paper is to define a new statistical framework to identify central modules in Gaussian Graphical Models (GGMs) estimated by gene expression data measured on a sample of patients with negative molecular response to Imatinib. Imanitib is a drug used to treat certain types of cancer that in many statistical studies has been reported to have a significant clinical effect on chronic myeloid leukemia (CML) in chronic phase as well as in blast crisis. For central module in a GGM we intend a module containing genes that are defined differently expressed.
Robustness of dynamic gene regulatory networks in Neisseria
2014
Gene regulatory networks are made of highly tuned, sparse and dynamical operations. We consider the case of the Neisseria meningitidis bacterium, a causative agent of life-threatening infections such as meningitis, and aim to infer a robust net- work of interactions across sixty proteins based on a detailed time course gene expres- sion study. We consider the problem of estimating a sparse dynamic Gaussian graphical model with L1 penalized maximum likelihood under a structured precision matrix. The structure can consist of specific time dynamics, known presence or absence of links in the graphical model or equality constraints on the parameters. The authors developed a new optimization algo…