Search results for " Instrumentation."

showing 10 items of 712 documents

Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at E beam =4 TeV

2018

Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the FLUKA Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared qua…

background [beam]background: inducedPhysics::Instrumentation and DetectorsCiencias FísicasMonte Carlo method01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysik//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)beam lossesSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]and programsInstrumentationQCMathematical PhysicsPhysicsLarge Hadron ColliderRadiation calculationsAtlas (topology)Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)DetectorATLAS experimentSettore FIS/01 - Fisica SperimentaleSimulation methods and programBeams (radiation) Accelerator modelling and simulations (multi-particle dynamics;; single-particle dynamics); Radiation calculations; Simulation methods; and programs; DETECTOR; SEARCHObservableAccelerator modelling and simulations (multi-particle dynamicMonte Carlo [numerical calculations]ATLASNuclear & Particles PhysicsAccelerator modelling and simulationsCERN LHC Coll collimators beam: backgroundcolliding beams [p p]numerical calculations: Monte CarloCIENCIAS NATURALES Y EXACTASParticle Physics - Experimentp p: scatteringAccelerator modelling and simulations (multi-particle dynamics; Radiation calculations; Simulation methods and programs; single-particle dynamics); Instrumentation; Mathematical Physics530 PhysicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesFísica de Partículas y CamposAccelerator Physics and InstrumentationNuclear physicsFLUKAsingle-particle dynamics)ATLAS LHC High Energy PhysicsHIGH ENERGY PHYSICSSEARCH0103 physical sciencesddc:610010306 general physicsAbsolute scaleDETECTORpressure [gas]Science & Technology010308 nuclear & particles physicsScatteringhep-exRadiation calculationscatteringAcceleratorfysik och instrumentering//purl.org/becyt/ford/1.3 [https]ghostAccelerator modelling and simulations (multi-particle dynamicsSimulation methodscorrelationinduced [background]Experimental High Energy Physicsgas: pressureSimulation methods and programsp p: colliding beamsexperimental results
researchProduct

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spalla…

2021

Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…

baryon number violation; feebly interacting particles; European Spallation Source; baryogenesisPhysics beyond the Standard ModelNuclear TheoryEXPERIMENTAL LIMITfeebly interacting particlesbaryogenesisAntineutron01 natural sciencesSubatomär fysikANTIPROTON ANNIHILATIONn: oscillationSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentsterilePhysicsMIRROR MATTERnew physicsanti-nddc:Antimatterbaryon: asymmetryproposed experimentDAMA ANNUAL MODULATIONNuclear and High Energy PhysicsParticle physicsAccelerator Physics and Instrumentation114 Physical sciencesBaryon asymmetrynuclear physics0103 physical sciencesDARK-MATTERmixingNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]TRANSITION OPERATORS010306 general physicsbaryon number: violationactivity report010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringMAJORANA NEUTRINOSsensitivitybaryon number violationBaryogenesisregenerationEuropean Spallation SourceUNIFIED PICTUREB-L SYMMETRYBaryon numberBARYON-NUMBER NONCONSERVATION
researchProduct

Real-time data processing in the ALICE High Level Trigger at the LHC

2019

At the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-relativistic energies. Many final-state particles are produced in each collision and their properties are measured by the ALICE detector. The detector signals induced by the produced particles are digitized leading to data rates that are in excess of 48 GB/$s$. The ALICE High Level Trigger (HLT) system pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories and reduce the data size in real time. The results of the reconstruction of the collision events, available online, are used for high level data quality and detector-performance monitoring and real-tim…

calibration ; ALICE ; trigger ; monitoring ; quality ; data management ; programming ; FPGA ; multiprocessor: graphics ; performancePhysics - Instrumentation and DetectorsHigh level triggerPhysics::Instrumentation and DetectorsLevel datatutkimuslaitteetFPGA; GPUDetector calibrationGPUFOS: Physical sciencesGeneral Physics and AstronomyhiukkasfysiikkaPhysics and Astronomy(all)01 natural sciencesprogramming010305 fluids & plasmasCombinatoricsALICE0103 physical sciencesmultiprocessor: graphics[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detFPGAcomputer.programming_languagePhysicsLarge Hadron ColliderFPGA; GPU; TRACKsignaalinkäsittelyInstrumentation and Detectors (physics.ins-det)triggercalibrationmonitoringdatailmaisimetqualityHardware and ArchitectureTRACKHigh Energy Physics::Experimentdata managementAlice (programming language)computerperformance
researchProduct

A High speed data link optimization for digitalized transfer to processing FPGA

2021

State-of-the-art arrays of detectors, that require digital processing, may have a sizeable number of digitalized signal links. This is the case in several experimental nuclear physics instruments. Moreover, the data rate of the sampled signals, defined primary by the signal bandwidth of the individual detectors, may not exhaust the capabilities of a single FPGA transceiver input. The preprocessing is usually carried out in a modern FPGA with transceiver data rate capabilities over 10Gbps. Moreover, cost effective FPGA have a limited number of transceivers for given FPGA processing capabilities. The investigation of a cost-effective and efficient solution to the mismatch between both data ra…

communication serial linkMotherboardComputer scienceFirmwarebusiness.industryInterface (computing)PhysicsQC1-999computer.software_genreLink aggregationelectronic instrumentationData linktime domain multiplexingfpga optimizationTransceiverField-programmable gate arrayCommunications protocolbusinesscomputerComputer hardwareEPJ Web of Conferences
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

2020

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…

data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothing
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

Track finding at Belle II

2021

Computer physics communications 259, 107610 (2021). doi:10.1016/j.cpc.2020.107610

data analysis methodPhysics - Instrumentation and DetectorsComputer scienceReal-time computingFOS: Physical sciencesGeneral Physics and AstronomyBELLETrack (rail transport)01 natural sciences530programming010305 fluids & plasmasHigh Energy Physics - ExperimentTracking algorithmsHigh Energy Physics - Experiment (hep-ex)Tracking detectorsSoftware0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Belle II; Tracking algorithms; Tracking detectorsBelle IIddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpurious relationshipSelection (genetic algorithm)Event reconstructionbusiness.industrytrack data analysisInstrumentation and Detectors (physics.ins-det)Modular designResolution (logic)charged particleHardware and Architecturebusinessperformance
researchProduct

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Measurements of the top quark branching ratios into channels with leptons and quarks with the ATLAS detector

2015

Measurements of the branching ratios of top quark decays into leptons and jets using events with t[bar over t] (top antitop) pairs are reported. Events were recorded with the ATLAS detector at the LHC in pp collisions at a center-of-mass energy of 7 TeV. The collected data sample corresponds to an integrated luminosity of 4.6  fb[superscript −1]. The measured top quark branching ratios agree with the Standard Model predictions within the measurement uncertainties of a few percent.

decay [top]Top quarkБольшой адронный коллайдерAtlas detectormeasured [cross section]верхние кваркиpair production [top]multiplicity [lepton]High Energy Physics - ExperimentScatteringSubatomär fysikHigh Energy Physics - Experiment (hep-ex)лептоныSubatomic PhysicsJets[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [p p]CollisionsSUPERSYMMETRYGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)протон-протонные столкновенияQCPhysicsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleSupersymmetryATLASTop Quark Branching RatiosCERN LHC CollProton–proton collisions7000 GeV-cmsPAIR CROSS-SECTIONcolliding beams [p p]Particle Physics - Experiment((n)jet lepton) [final state]top quark branching ratios; leptons; quarks; ATLAS detectorQuarkParticle physicsNuclear and High Energy PhysicsCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesPAIR CROSS-SECTION; PARTON DISTRIBUTIONS; PP COLLISIONS; SUPERSYMMETRY; TEVBranching (polymer chemistry)Accelerator Physics and Instrumentation530Nuclear physicsddc:530Science & TechnologyPP COLLISIONSScatteringHigh Energy Physics::PhenomenologyFísicaAcceleratorfysik och instrumenteringLeptons and Quarksbranching ratio: measured [top]PARTON DISTRIBUTIONSExperimental High Energy PhysicsTEVp p --> 2top anythingHigh Energy Physics::ExperimentATLAS детекторhadronic decay [tau]Leptonexperimental results
researchProduct