Search results for " Machine Learning"

showing 10 items of 300 documents

Human experts vs. machines in taxa recognition

2020

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…

FOS: Computer and information sciencesComputer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceClassification approachTaxonomic expert02 engineering and technologyneuroverkotcomputer.software_genreConvolutional neural networkQuantitative Biology - Quantitative MethodsField (computer science)Machine Learning (cs.LG)Machine learning approachesStatistics - Machine LearningAutomated approachDeep neural networks0202 electrical engineering electronic engineering information engineeringTaxonomic rankQuantitative Methods (q-bio.QM)Classification (of information)Artificial neural networksystematiikka (biologia)Prediction accuracyIdentification (information)koneoppiminenMulti-image dataBenchmark (computing)020201 artificial intelligence & image processingConvolutional neural networksComputer Vision and Pattern RecognitionClassification errorsMachine Learning (stat.ML)Machine learningState of the artElectrical and Electronic EngineeringTaxonomySupport vector machinesLearning systemsbusiness.industryNode (networking)020206 networking & telecommunicationsComputer circuitsHierarchical classificationConvolutionSupport vector machineFOS: Biological sciencesTaxonomic hierarchySignal ProcessingBiomonitoringBenchmark datasetsArtificial intelligencebusinesscomputertaksonitSoftware
researchProduct

Graphical model inference : Sequential Monte Carlo meets deterministic approximations

2019

Approximate inference in probabilistic graphical models (PGMs) can be grouped into deterministic methods and Monte-Carlo-based methods. The former can often provide accurate and rapid inferences, but are typically associated with biases that are hard to quantify. The latter enjoy asymptotic consistency, but can suffer from high computational costs. In this paper we present a way of bridging the gap between deterministic and stochastic inference. Specifically, we suggest an efficient sequential Monte Carlo (SMC) algorithm for PGMs which can leverage the output from deterministic inference methods. While generally applicable, we show explicitly how this can be done with loopy belief propagati…

FOS: Computer and information sciencesComputer Science - Machine Learningkoneoppiminenmachine learningStatistics - Machine LearningMachine Learning (stat.ML)statistical modelstilastolliset mallitComputer Science::DatabasesMachine Learning (cs.LG)
researchProduct

An Empirical Investigation into Deep and Shallow Rule Learning

2021

Inductive rule learning is arguably among the most traditional paradigms in machine learning. Although we have seen considerable progress over the years in learning rule-based theories, all state-of-the-art learners still learn descriptions that directly relate the input features to the target concept. In the simplest case, concept learning, this is a disjunctive normal form (DNF) description of the positive class. While it is clear that this is sufficient from a logical point of view because every logical expression can be reduced to an equivalent DNF expression, it could nevertheless be the case that more structured representations, which form deep theories by forming intermediate concept…

FOS: Computer and information sciencesComputer Science - Machine Learninglearning in logicComputer Science - Artificial Intelligencedeep learningmini-batch learningQA75.5-76.95stochastic optimizationMachine Learning (cs.LG)inductive rule learningArtificial Intelligence (cs.AI)Artificial IntelligenceElectronic computers. Computer scienceOriginal Research
researchProduct

Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation.

2020

Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…

FOS: Computer and information sciencesComputer Science - Machine Learningstochastic local searchrule extractionComputer Science - Artificial Intelligencelogical rulesQA75.5-76.95004 InformatikMachine Learning (cs.LG)Artificial Intelligence (cs.AI)Artificial IntelligenceElectronic computers. Computer scienceconvolutional neural networksk-term DNFinterpretability004 Data processingOriginal ResearchFrontiers in artificial intelligence
researchProduct

Quantum autoencoders via quantum adders with genetic algorithms

2017

The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoe…

FOS: Computer and information sciencesComputer Science::Machine Learning0301 basic medicineComputer Science - Machine LearningAdderPhysics and Astronomy (miscellaneous)Quantum machine learningField (physics)Computer scienceMaterials Science (miscellaneous)Computer Science::Neural and Evolutionary ComputationFOS: Physical sciencesData_CODINGANDINFORMATIONTHEORYTopology01 natural sciencesMachine Learning (cs.LG)Statistics::Machine Learning03 medical and health sciencesQuantum state0103 physical sciencesNeural and Evolutionary Computing (cs.NE)Electrical and Electronic Engineering010306 general physicsQuantumQuantum PhysicsArtificial neural networkComputer Science - Neural and Evolutionary ComputingTheoryofComputation_GENERALAutoencoderAtomic and Molecular Physics and OpticsQuantum technology030104 developmental biologyComputerSystemsOrganization_MISCELLANEOUSQuantum Physics (quant-ph)
researchProduct

Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing

2021

In many inference problems, the evaluation of complex and costly models is often required. In this context, Bayesian methods have become very popular in several fields over the last years, in order to obtain parameter inversion, model selection or uncertainty quantification. Bayesian inference requires the approximation of complicated integrals involving (often costly) posterior distributions. Generally, this approximation is obtained by means of Monte Carlo (MC) methods. In order to reduce the computational cost of the corresponding technique, surrogate models (also called emulators) are often employed. Another alternative approach is the so-called Approximate Bayesian Computation (ABC) sc…

FOS: Computer and information sciencesComputer scienceAstronomyModel selectionBayesian inferenceMonte Carlo methodBayesian probabilityAerospace EngineeringAstronomyInferenceMachine Learning (stat.ML)Context (language use)Bayesian inferenceStatistics - ComputationComputational Engineering Finance and Science (cs.CE)remote sensingimportance samplingStatistics - Machine Learningnumerical inversionparticle filteringElectrical and Electronic EngineeringUncertainty quantificationApproximate Bayesian computationComputer Science - Computational Engineering Finance and ScienceComputation (stat.CO)IEEE Transactions on Aerospace and Electronic Systems
researchProduct

Kernel Anomalous Change Detection for Remote Sensing Imagery

2020

Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…

FOS: Computer and information sciencesComputer scienceGaussianComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologysymbols.namesakeStatistics - Machine LearningElectrical and Electronic Engineering021101 geological & geomatics engineeringbusiness.industryHilbert spaceHyperspectral imagingPattern recognitionNonlinear systemKernel methodKernel (image processing)13. Climate actionsymbolsGeneral Earth and Planetary SciencesArtificial intelligencebusinessChange detection
researchProduct

A Review of Multiple Try MCMC algorithms for Signal Processing

2018

Many applications in signal processing require the estimation of some parameters of interest given a set of observed data. More specifically, Bayesian inference needs the computation of {\it a-posteriori} estimators which are often expressed as complicated multi-dimensional integrals. Unfortunately, analytical expressions for these estimators cannot be found in most real-world applications, and Monte Carlo methods are the only feasible approach. A very powerful class of Monte Carlo techniques is formed by the Markov Chain Monte Carlo (MCMC) algorithms. They generate a Markov chain such that its stationary distribution coincides with the target posterior density. In this work, we perform a t…

FOS: Computer and information sciencesComputer scienceMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisBayesian inference01 natural sciencesStatistics - Computation010104 statistics & probabilitysymbols.namesakeArtificial IntelligenceStatistics - Machine Learning0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputation (stat.CO)Signal processingMarkov chainApplied MathematicsEstimator020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsSample spaceComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithm
researchProduct

Diffusion map for clustering fMRI spatial maps extracted by Indipendent Component Analysis

2013

Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering.…

FOS: Computer and information sciencesDiffusion (acoustics)Computer sciencediffusion mapMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Correlation03 medical and health sciencesTotal variation0302 clinical medicineStatistics - Machine LearningVoxel0202 electrical engineering electronic engineering information engineeringComputer Science - Computational Engineering Finance and ScienceCluster analysisdimensionality reductionta113spatial mapsbusiness.industryDimensionality reductionfunctional magnetic resonance imaging (fMRI)Pattern recognitionIndependent component analysisSpectral clusteringComputer Science - Learningindependent component analysista6131020201 artificial intelligence & image processingArtificial intelligenceDYNAMICAL-SYSTEMSbusinesscomputer030217 neurology & neurosurgeryclustering
researchProduct

Learning Structures in Earth Observation Data with Gaussian Processes

2020

Gaussian Processes (GPs) has experienced tremendous success in geoscience in general and for bio-geophysical parameter retrieval in the last years. GPs constitute a solid Bayesian framework to formulate many function approximation problems consistently. This paper reviews the main theoretical GP developments in the field. We review new algorithms that respect the signal and noise characteristics, that provide feature rankings automatically, and that allow applicability of associated uncertainty intervals to transport GP models in space and time. All these developments are illustrated in the field of geoscience and remote sensing at a local and global scales through a set of illustrative exa…

FOS: Computer and information sciencesEarth observation010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesFOS: Physical sciencesMachine Learning (stat.ML)02 engineering and technologyApplied Physics (physics.app-ph)computer.software_genre01 natural sciencesField (computer science)Physics::GeophysicsSet (abstract data type)Physics - Geophysicssymbols.namesakeStatistics - Machine LearningFeature (machine learning)Gaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryPhysics - Applied PhysicsGeophysics (physics.geo-ph)Function approximationsymbolsGlobal Positioning SystemNoise (video)Data miningbusinesscomputer
researchProduct