Search results for " Machine learning"

showing 10 items of 300 documents

Network reconstruction for trans acting genetic loci using multi-omics data and prior information.

2022

Background: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors…

Data Integrationeducation.field_of_studyComputer scienceScale (chemistry)Bayesian probabilityPopulationQuantitative Trait LociBiological databaseInferenceData Integration ; Machine Learning ; Multi-omics ; Network Inference ; Personalized Medicine ; Prior Information ; Simulation ; Systems BiologyComputational biologyQuantitative trait locusReplication (computing)Machine LearningPrior probabilityCohortGeneticsMolecular MedicineHumans:Medicine [Science]Gene Regulatory NetworkseducationTranscriptomeMolecular BiologyGenetics (clinical)Genome medicine
researchProduct

Distributed Real-Time Sentiment Analysis for Big Data Social Streams

2014

Big data trend has enforced the data-centric systems to have continuous fast data streams. In recent years, real-time analytics on stream data has formed into a new research field, which aims to answer queries about "what-is-happening-now" with a negligible delay. The real challenge with real-time stream data processing is that it is impossible to store instances of data, and therefore online analytical algorithms are utilized. To perform real-time analytics, pre-processing of data should be performed in a way that only a short summary of stream is stored in main memory. In addition, due to high speed of arrival, average processing time for each instance of data should be in such a way that…

Data streamFOS: Computer and information sciencesComputer Science - Computation and LanguageComputer sciencebusiness.industryData stream miningSentiment analysisBig dataMachine Learning (stat.ML)Databases (cs.DB)Data structurecomputer.software_genreField (computer science)Computer Science - Information RetrievalTree (data structure)Computer Science - DatabasesComputer Science - Distributed Parallel and Cluster ComputingAnalyticsStatistics - Machine LearningData miningDistributed Parallel and Cluster Computing (cs.DC)businesscomputerComputation and Language (cs.CL)Information Retrieval (cs.IR)
researchProduct

Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform

2021

Vegetation Types (VTs) are important managerial units, and their identification serves as essential tools for the conservation of land covers. Despite a long history of Earth observation applications to assess and monitor land covers, the quantitative detection of sparse VTs remains problematic, especially in arid and semiarid areas. This research aimed to identify appropriate multi-temporal datasets to improve the accuracy of VTs classification in a heterogeneous landscape in Central Zagros, Iran. To do so, first the Normalized Difference Vegetation Index (NDVI) temporal profile of each VT was identified in the study area for the period of 2018, 2019, and 2020. This data revealed strong se…

Earth observation010504 meteorology & atmospheric sciencesComputer scienceNDVIScienceQvegetation types classification04 agricultural and veterinary sciences15. Life on landTime optimal01 natural sciencesNormalized Difference Vegetation IndexRandom forestIdentification (information)Vegetation typesmachine learning040103 agronomy & agriculturevegetation types classification; multi-temporal images; machine learning; Google Earth Engine; NDVI0401 agriculture forestry and fisheriesGeneral Earth and Planetary SciencesGoogle Earth EngineCartographymulti-temporal images0105 earth and related environmental sciencesRemote Sensing
researchProduct

Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine

2021

For the last decade, Gaussian process regression (GPR) proved to be a competitive machine learning regression algorithm for Earth observation applications, with attractive unique properties such as band relevance ranking and uncertainty estimates. More recently, GPR also proved to be a proficient time series processor to fill up gaps in optical imagery, typically due to cloud cover. This makes GPR perfectly suited for large-scale spatiotemporal processing of satellite imageries into cloud-free products of biophysical variables. With the advent of the Google Earth Engine (GEE) cloud platform, new opportunities emerged to process local-to-planetary scale satellite data using advanced machine …

Earth observationGoogle Earth Engine (GEE); Gaussian process regression (GPR); machine learning; Sentinel-2; gap filling; leaf area index (LAI)010504 meteorology & atmospheric sciencesComputer scienceScienceleaf area index (LAI)0211 other engineering and technologiesCloud computing02 engineering and technologycomputer.software_genre01 natural sciencesKrigingGaussian process regression (GPR)021101 geological & geomatics engineering0105 earth and related environmental sciencesPixelbusiness.industryQGoogle Earth Engine (GEE)machine learningKernel (image processing)Ground-penetrating radarGeneral Earth and Planetary SciencesData miningSentinel-2Scale (map)businesscomputergap fillingLevel of detailRemote Sensing; Volume 13; Issue 3; Pages: 403
researchProduct

Accurate Wound and Lice Detection in Atlantic Salmon Fish Using a Convolutional Neural Network

2022

The population living in the coastal region relies heavily on fish as a food source due to their vast availability and low cost. This need has given rise to fish farming. Fish farmers and the fishing industry face serious challenges such as lice in the aquaculture ecosystem, wounds due to injuries, early fish maturity, etc. causing millions of fish deaths in the fish aquaculture ecosystem. Several measures, such as cleaner fish and anti-parasite drugs, are utilized to reduce sea lice, but getting rid of them entirely is challenging. This study proposed an image-based machine-learning technique to detect wounds and the presence of lice in the live salmon fish farm ecosystem. A new equally di…

Ecologyfish wound detection; lice detection; aquatic salmon fish; machine learning; convolutional neural networkAquatic ScienceEcology Evolution Behavior and SystematicsVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480Fishes
researchProduct

A machine learning application to predict early lung involvement in scleroderma: A feasibility evaluation

2021

Introduction: Systemic sclerosis (SSc) is a systemic immune-mediated disease, featuring fibrosis of the skin and organs, and has the greatest mortality among rheumatic diseases. The nervous system involvement has recently been demonstrated, although actual lung involvement is considered the leading cause of death in SSc and, therefore, should be diagnosed early. Pulmonary function tests are not sensitive enough to be used for screening purposes, thus they should be flanked by other clinical examinations

Elastic net regularizationSpirometryMedicine (General)High-resolution computed tomographyArtificial intelligenceClinical BiochemistryDiseaseMachine learningcomputer.software_genreArticlePulmonary function testingR5-920Machine learningmedicineCause of deathEsophageal dilatationintegumentary systemmedicine.diagnostic_testbusiness.industryHRCT chestRegressionRandom forestArtificial intelligence; Esophageal dilatation; HRCT chest; Machine learning; Systemic sclerosisSystemic sclerosisArtificial intelligencebusinesscomputer
researchProduct

Approximating Empirical Surface Reflectance Data through Emulation: Opportunities for Synthetic Scene Generation

2019

Collection of spectroradiometric measurements with associated biophysical variables is an essential part of the development and validation of optical remote sensing vegetation products. However, their quality can only be assessed in the subsequent analysis, and often there is a need for collecting extra data, e.g., to fill in gaps. To generate empirical-like surface reflectance data of vegetated surfaces, we propose to exploit emulation, i.e., reconstruction of spectral measurements through statistical learning. We evaluated emulation against classical interpolation methods using an empirical field dataset with associated hyperspectral spaceborne CHRIS and airborne HyMap reflectance spectra…

Emulationspectroscopy010504 meteorology & atmospheric sciencesComputer scienceScienceQ0211 other engineering and technologiesHyperspectral imagingemulation02 engineering and technology01 natural sciencesReflectivityinterpolationData cubemachine learningscene simulationGeneral Earth and Planetary Sciencesemulation; machine learning; interpolation; spectroscopy; scene simulationSpectral resolutionSpectroscopyHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInterpolationRemote Sensing
researchProduct

SmartLeg: An intelligent active robotic prosthesis for lower-limb amputees

2011

In recent years, there has been a worldwide interest in improvement of mobility of people with lower limb amputation. In spite of significant development of new technologies during the last decade, commercial below-knee and above-knee prostheses are still energetically passive devices. However, many locomotive functions, like walking up stairs and slopes, need significant power in knee and ankle joints. The additional power for doing previously mentioned activities needs to be achieved by means of external energy sources, which should be integral prosthetic components. This paper presents preliminary investigations towards an active robotic prosthesis that could potentially enable people wi…

Engineeringbusiness.industrymedicine.medical_treatmentProsthesisActive robotic prosthesis assistive robotics machine learningLower limbExternal energyGait (human)StairsAmputationLower limb amputationPower consumptionmedicinebusinesshuman activitiesSimulation2011 XXIII International Symposium on Information, Communication and Automation Technologies
researchProduct

The New Era of Business Digitization through the Implementation of 5G Technology in Romania

2021

The main objective of the present research is to identify the advantages and benefits that the use and implementation of 5G technology has on the development and evolution of the Romanian business environment. The study is based on a theoretical documentation regarding existing information in the field and a descriptive analysis of the evolution of the technology in Romania and worldwide. The research method chosen is a survey based on an opinion poll (questionnaire) to find out the availability of economic entities regarding the implementation of 5G technologies, the foreseen expectations and those realized by the business environment regarding the effects of 5G technologies on the economi…

Environmental effects of industries and plantsRenewable Energy Sustainability and the EnvironmentGeography Planning and DevelopmentTJ807-830big data analyticsManagement Monitoring Policy and LawIndustry 4.0artificial intelligenceTD194-1955G; Industry 4.0; artificial intelligence; machine learning; virtual reality; big data analytics; internet of thingsRenewable energy sourcesEnvironmental sciencesmachine learningvirtual realityGE1-3505GSustainability
researchProduct

Countering Adversarial Inference Evasion Attacks Towards ML-Based Smart Lock in Cyber-Physical System Context

2021

Machine Learning (ML) has been taking significant evolutionary steps and provided sophisticated means in developing novel and smart, up-to-date applications. However, the development has also brought new types of hazards into the daylight that can have even destructive consequences required to be addressed. Evasion attacks are among the most utilized attacks that can be generated in adversarial settings during the system operation. In assumption, ML environment is benign, but in reality, perpetrators may exploit vulnerabilities to conduct these gradient-free or gradient-based malicious adversarial inference attacks towards cyber-physical systems (CPS), such as smart buildings. Evasion attac…

ExploitComputer sciencebusiness.industryCyber-physical systemevasion attacksEvasion (network security)Context (language use)Adversarial machine learningComputer securitycomputer.software_genreadversarial machine learningdefensive mechanismscyber-physical systemAdversarial systemSmart lockkoneoppiminenälytekniikkabusinesskyberturvallisuuscomputerverkkohyökkäyksetBuilding automation
researchProduct