Search results for " Machine learning"

showing 10 items of 300 documents

Learning User's Confidence for Active Learning

2013

In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing the effect of resolution is such a …

FOS: Computer and information sciencesComputer Science - Machine LearningActive learning (machine learning)Computer scienceComputer Vision and Pattern Recognition (cs.CV)SVM0211 other engineering and technologiesComputer Science - Computer Vision and Pattern RecognitionContext (language use)02 engineering and technologyMachine learningcomputer.software_genreTask (project management)Machine Learning (cs.LG)Classifier (linguistics)0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringbad statesElectrical and Electronic Engineeringphotointerpretationuser's confidence021101 geological & geomatics engineeringActive learning (AL)Pixelbusiness.industryRank (computer programming)Image and Video Processing (eess.IV)very high resolution (VHR) imagery020206 networking & telecommunicationsElectrical Engineering and Systems Science - Image and Video ProcessingClass (biology)General Earth and Planetary SciencesArtificial intelligenceHeuristicsbusinesscomputerIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
researchProduct

Active emulation of computer codes with Gaussian processes – Application to remote sensing

2020

Many fields of science and engineering rely on running simulations with complex and computationally expensive models to understand the involved processes in the system of interest. Nevertheless, the high cost involved hamper reliable and exhaustive simulations. Very often such codes incorporate heuristics that ironically make them less tractable and transparent. This paper introduces an active learning methodology for adaptively constructing surrogate models, i.e. emulators, of such costly computer codes in a multi-output setting. The proposed technique is sequential and adaptive, and is based on the optimization of a suitable acquisition function. It aims to achieve accurate approximations…

FOS: Computer and information sciencesComputer Science - Machine LearningActive learningActive learning (machine learning)Computer sciencemedia_common.quotation_subjectMachine Learning (stat.ML)Radiative transfer model02 engineering and technology01 natural sciencesMachine Learning (cs.LG)symbols.namesakeArtificial IntelligenceStatistics - Machine Learning0103 physical sciences0202 electrical engineering electronic engineering information engineeringCode (cryptography)Emulation010306 general physicsFunction (engineering)Gaussian processGaussian process emulatorGaussian processRemote sensingmedia_commonEmulationbusiness.industrySampling (statistics)Remote sensingSignal ProcessingGlobal Positioning Systemsymbols020201 artificial intelligence & image processingComputer codeComputer Vision and Pattern RecognitionbusinessHeuristicsSoftwareDesign of experimentsPattern Recognition
researchProduct

The Tsetlin Machine -- A Game Theoretic Bandit Driven Approach to Optimal Pattern Recognition with Propositional Logic

2018

Although simple individually, artificial neurons provide state-of-the-art performance when interconnected in deep networks. Arguably, the Tsetlin Automaton is an even simpler and more versatile learning mechanism, capable of solving the multi-armed bandit problem. Merely by means of a single integer as memory, it learns the optimal action in stochastic environments through increment and decrement operations. In this paper, we introduce the Tsetlin Machine, which solves complex pattern recognition problems with propositional formulas, composed by a collective of Tsetlin Automata. To eliminate the longstanding problem of vanishing signal-to-noise ratio, the Tsetlin Machine orchestrates the au…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionMachine Learning (cs.LG)
researchProduct

Can Interpretable Reinforcement Learning Manage Prosperity Your Way?

2022

Personalisation of products and services is fast becoming the driver of success in banking and commerce. Machine learning holds the promise of gaining a deeper understanding of and tailoring to customers’ needs and preferences. Whereas traditional solutions to financial decision problems frequently rely on model assumptions, reinforcement learning is able to exploit large amounts of data to improve customer modelling and decision-making in complex financial environments with fewer assumptions. Model explainability and interpretability present challenges from a regulatory perspective which demands transparency for acceptance; they also offer the opportunity for improved insight into and unde…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceGeneral Earth and Planetary SciencesAI in banking; personalized services; prosperity management; explainable AI; reinforcement learning; policy regularisationVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550General Environmental ScienceMachine Learning (cs.LG)AI; Volume 3; Issue 2; Pages: 526-537
researchProduct

Focusing Knowledge-based Graph Argument Mining via Topic Modeling

2021

Decision-making usually takes five steps: identifying the problem, collecting data, extracting evidence, identifying pro and con arguments, and making decisions. Focusing on extracting evidence, this paper presents a hybrid model that combines latent Dirichlet allocation and word embeddings to obtain external knowledge from structured and unstructured data. We study the task of sentence-level argument mining, as arguments mostly require some degree of world knowledge to be identified and understood. Given a topic and a sentence, the goal is to classify whether a sentence represents an argument in regard to the topic. We use a topic model to extract topic- and sentence-specific evidence from…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceInformation Retrieval (cs.IR)Computer Science - Information RetrievalMachine Learning (cs.LG)
researchProduct

A Novel Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning

2020

Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the Tsetlin Automata in TM learning, for increased d…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct

A Critical Analysis of Classifier Selection in Learned Bloom Filters

2022

Learned Bloom Filters, i.e., models induced from data via machine learning techniques and solving the approximate set membership problem, have recently been introduced with the aim of enhancing the performance of standard Bloom Filters, with special focus on space occupancy. Unlike in the classical case, the "complexity" of the data used to build the filter might heavily impact on its performance. Therefore, here we propose the first in-depth analysis, to the best of our knowledge, for the performance assessment of a given Learned Bloom Filter, in conjunction with a given classifier, on a dataset of a given classification complexity. Indeed, we propose a novel methodology, supported by soft…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct

A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks

2019

In this paper, we apply a new promising tool for pattern classification, namely, the Tsetlin Machine (TM), to the field of disease forecasting. The TM is interpretable because it is based on manipulating expressions in propositional logic, leveraging a large team of Tsetlin Automata (TA). Apart from being interpretable, this approach is attractive due to its low computational cost and its capacity to handle noise. To attack the problem of forecasting, we introduce a preprocessing method that extends the TM so that it can handle continuous input. Briefly stated, we convert continuous input into a binary representation based on thresholding. The resulting extended TM is evaluated and analyzed…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct

The Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses

2019

The Tsetlin Machine (TM) is an interpretable mechanism for pattern recognition that constructs conjunctive clauses from data. The clauses capture frequent patterns with high discriminating power, providing increasing expression power with each additional clause. However, the resulting accuracy gain comes at the cost of linear growth in computation time and memory usage. In this paper, we present the Weighted Tsetlin Machine (WTM), which reduces computation time and memory usage by weighting the clauses. Real-valued weighting allows one clause to replace multiple, and supports fine-tuning the impact of each clause. Our novel scheme simultaneously learns both the composition of the clauses an…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceStatistics - Machine LearningMachine Learning (stat.ML)Machine Learning (cs.LG)
researchProduct

The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems

2019

The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceStatistics - Machine LearningMachine Learning (stat.ML)Machine Learning (cs.LG)
researchProduct