Search results for " cell and molecular biology"

showing 10 items of 69 documents

Structure of SNX9 SH3 in complex with a viral ligand reveals the molecular basis of its unique specificity for alanine-containing class I SH3 motifs

2021

Class I SH3 domain-binding motifs generally comply with the consensus sequence [R/K]x0PxxP, the hydrophobic residue 0 being proline or leucine. We have studied the unusual 0 = Ala-specificity of SNX9 SH3 by determining its complex structure with a peptide present in eastern equine encephalitis virus (EEEV) nsP3. The structure revealed the length and composition of the n-Src loop as important factors determining specificity. We also compared the affinities of EEEV nsP3 peptide, its mutants, and cellular ligands to SNX9 SH3. These data suggest that nsP3 has evolved to minimize reduction of conformational entropy upon binding, hence acquiring stronger affinity, enabling takeover of SNX9. The R…

DYNAMICSPROLINE-RICH PEPTIDESviruksetPROTEINSvirusesHTLV-1 GagLigandsEVOLUTIONARY CONSERVATIONalfaviruksetsrc Homology DomainsHIGH-AFFINITYretroviruksetDOMAINStructural BiologyBINDINGAnimalsHorsesMolecular Biologysoluviestintä11832 Microbiology and virologyAlanineBinding SitesPXXP MOTIFSisothermal titration calorimetrySH3solution NMR spectroscopyEEEV nsP3HIV-11182 Biochemistry cell and molecular biologyproteiinitCHEMICAL-SHIFTS3111 BiomedicinePeptidesSNX9Protein Binding
researchProduct

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice

2020

We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dyna…

DYNAMICSepistasisMale0301 basic medicineNon-Mendelian inheritanceMitochondrial DiseasesMetabolic disordersRespiratory chainGeneral Physics and AstronomyDISEASEmitokondriotauditElectron Transport Complex IIIMice0302 clinical medicineenergy metabolismCRYSTAL-STRUCTUREIRON-SULFUR PROTEINlcsh:ScienceMice KnockoutGeneticsmitokondrio-DNAMultidisciplinaryCYTOCHROME BC(1) COMPLEXCytochrome bQCytochromes bMitochondria3. Good healthFemaleRESPIRATORY-CHAINGRACILE SYNDROMEhenkiinjääminenOxidation-ReductionMitochondrial DNAMitochondrial diseaseScienceCongenicMolecular Dynamics SimulationBiologyDNA MitochondrialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesaineenvaihduntahäiriötmedicinemetabolic disordersAnimalsMUTATIONSEpistasis GeneticEnergy metabolismGeneral ChemistryCytochrome b Groupmedicine.diseaseMice Inbred C57BL030104 developmental biologyCoenzyme Q – cytochrome c reductaseEpistasis1182 Biochemistry cell and molecular biologyATPases Associated with Diverse Cellular ActivitiesEpistasislcsh:QGUI MEMBRANE-BUILDERkoe-eläinmallitMetabolism Inborn Errors030217 neurology & neurosurgeryGENERATIONMolecular ChaperonesNature Communications
researchProduct

Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins

2022

Low-molecular weight natural products display vast structural diversity and have played a key role in the development of novel therapeutics. Here we report the discovery of novel members of the aeruginosin family of natural products, which we named varlaxins. The chemical structures of varlaxins 1046A and 1022A were determined using a combination of mass spectrometry, analysis of one- and two-dimensional NMR spectra, and HPLC analysis of Marfey's derivatives. These analyses revealed that varlaxins 1046A and 1022A are composed of the following moieties: 2-O-methylglyceric acid 3-O-sulfate, isoleucine, 2-carboxy-6-hydroxyoctahydroindole (Choi), and a terminal arginine derivative. Varlaxins 10…

EXPRESSIONentsyymitBIOSYNTHETIC GENE-CLUSTERArginineBiochemistryMICROCYSTIS298-AHumansTrypsinPhysical and Theoretical ChemistrysyanobakteeritChromatography High Pressure LiquidtrypsiinitinhibiittoritNOSTOC SPBiological ProductsMolecular StructureIDENTIFICATIONOrganic ChemistryPEPTIDESseriiniproteaasiluonnonaineetEVOLUTIONPRSS3/MESOTRYPSINbiotekniikka1182 Biochemistry cell and molecular biologyhuman activitiesRESISTANCE
researchProduct

G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids

2022

The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages…

G2/M checkpointnuclear egress of capsidsgeenitisäntäsolutcyclin B1canine parvovirusapoptosisApoptosisCRM1Crm1bakteeritsolut1182 Biochemistry cell and molecular biology3111 BiomedicineCanine parvovirusparvoviruksetNuclear egress of capsidssolukiertosolubiologia
researchProduct

Optogenetic Control of Bacterial Expression by Red Light

2022

In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors.…

HistoryfytokromitSIGNALING MECHANISMHistidine KinaseLightPolymers and PlasticsBiomedical EngineeringHISTIDINE KINASESfotobiologiasensory photoreceptorBiochemistry Genetics and Molecular Biology (miscellaneous)Industrial and Manufacturing EngineeringbakteeritOPTICAL CONTROLgeeniekspressioBusiness and International ManagementoptogeneticsHEME OXYGENASEGENE-EXPRESSIONphytochromeoptogenetiikkaPHOTORECEPTORSBacteriaBiliverdineREARRANGEMENTSBACTERIOPHYTOCHROMESGeneral MedicinePhosphoric Monoester HydrolasesOptogeneticsreseptorit (biokemia)two-component systemESCHERICHIA-COLIgene expression1182 Biochemistry cell and molecular biology3111 BiomedicinePhytochromevalosignal transductionSSRN Electronic Journal
researchProduct

A standard calculation methodology for human doubly labeled water studies.

2021

Summary The doubly labeled water (DLW) method measures total energy expenditure (TEE) in free-living subjects. Several equations are used to convert isotopic data into TEE. Using the International Atomic Energy Agency (IAEA) DLW database (5,756 measurements of adults and children), we show considerable variability is introduced by different equations. The estimated rCO2 is sensitive to the dilution space ratio (DSR) of the two isotopes. Based on performance in validation studies, we propose a new equation based on a new estimate of the mean DSR. The DSR is lower at low body masses (<10 kg). Using data for 1,021 babies and infants, we show that the DSR varies non-linearly with body mass betw…

IndirectFuture studiesBODY-WATER030309 nutrition & dietetics[SDV]Life Sciences [q-bio]Body waterINFANTS030209 endocrinology & metabolismDoubly labeled watertotal energy expenditureCarbon dioxide productionCalorimetryOxygen IsotopesCalorimetryArticleGeneral Biochemistry Genetics and Molecular BiologyRC120003 medical and health sciences0302 clinical medicineTotal energy expendituredoubly labeled water; free-living; total energy expenditure; validationStatisticsINDIRECT CALORIMETRYRange (statistics)O-18HumansObesity(H2O)-H-2-O-18 METHODCARBON-DIOXIDE PRODUCTIONComputingMilieux_MISCELLANEOUSMathematicsCO2 PRODUCTIONH-2validation0303 health sciencesfree-livingDILUTION SPACE RATIOENERGY-EXPENDITUREWaterCalorimetry IndirectDeuterium6. Clean waterdoubly labeled waterDilutionIAEA DLW database groupBody Composition1182 Biochemistry cell and molecular biologyEnergy Metabolism
researchProduct

Extracellular vesicles provide a capsid-free vector for oncolytic adenoviral DNA delivery

2020

Extracellular vesicles (EVs) have been showcased as auspicious candidates for delivering therapeutic cargo, including oncolytic viruses for cancer treatment. Delivery of oncolytic viruses in EVs could provide considerable advantages, hiding the viruses from the immune system and providing alternative entry pathways into cancer cells. Here we describe the formation and viral cargo of EVs secreted by cancer cells infected with an oncolytic adenovirus (IEVs, infected cell-derived EVs) as a function of time after infection. IEVs were secreted already before the lytic release of virions and their structure resembled normally secreted EVs, suggesting that they were not just apoptotic fragments of…

MECHANISM0301 basic medicineOncolytic adenovirusHistologyadenoviruHEPATITIS-B-VIRUSGenetic enhancementvirusesTETRASPANINGene deliveryBiologysolukalvotGENE DELIVERYPATHWAY03 medical and health sciences0302 clinical medicineImmune systemlcsh:QH573-671MICROVESICLESEXOSOMESsyöpähoidotlcsh:CytologyMICROPARTICLESadenoviruksetCell BiologyadenovirusExtracellular vesiclesVirologyMicrovesicles3. Good healthOncolytic virus030104 developmental biologyLytic cycle030220 oncology & carcinogenesisCELLSCancer cellonkolyyttiset virukset1182 Biochemistry cell and molecular biologycancer therapyAUTOPHAGYonkolyyttinen virushoitoextracellular vesiclesResearch ArticleDNA delivery
researchProduct

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

2021

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

MECHANISMMaterials scienceAbsorption spectroscopyDNA repairfotobiologia02 engineering and technologyCrystal structureREPAIR ACTIVITY03 medical and health sciencesCOLI DNA PHOTOLYASEX-RAY-DIFFRACTIONCryptochromeStructural BiologyAnimalsserial crystallographyCRYSTAL-STRUCTURECRYPTOCHROMEPhotolyaseSERIAL FEMTOSECOND CRYSTALLOGRAPHY030304 developmental biology0303 health sciencesCrystallographyflavoproteinsFADResolution (electron density)TemperaturebanaanikärpänenDNAkidetiede(6-4) photolyase021001 nanoscience & nanotechnologyResearch PapersRADICAL TRANSFER(6–4) photolyaseroom-temperature structureCrystallographyphotolyasesDrosophila melanogasterRECONSTITUTIONX-ray crystallography1182 Biochemistry cell and molecular biologylämpötilaproteiinit0210 nano-technologyDeoxyribodipyrimidine Photo-LyasePHOTOACTIVATIONVisible spectrumActa Crystallographica Section D Structural Biology
researchProduct

Construction of Chimeric Dual-Chain Avidin by Tandem Fusion of the Related Avidins

2011

BackgroundAvidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences i…

Macromolecular Assemblieslcsh:MedicineBiosensing TechniquesPolymerase Chain ReactionBiochemistryProtein Structure Secondarychemistry.chemical_compoundProtein structureBiotinMacromolecular Structure AnalysisProtein biosynthesisBiomacromolecule-Ligand InteractionsSurface plasmon resonancelcsh:Science0303 health sciencesMultidisciplinarybiologyrespiratory systemRecombinant ProteinsBiochemistryBiotinylationChromatography GelBiophysic Al SimulationsResearch ArticleProtein StructureStructural similarityRecombinant Fusion Proteins030303 biophysicsBiophysicsBiotinMolecular Dynamics SimulationBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biology03 medical and health sciencesstomatognathic systemDefense ProteinsEscherichia coliAnimalsGene familyProtein InteractionsBiology030304 developmental biologylcsh:RProteinsComputational BiologySurface Plasmon ResonanceAvidinchemistrySmall MoleculesFermentationbiology.proteinlcsh:QChickensAvidinPLoS ONE
researchProduct