Search results for " cells"

showing 10 items of 6636 documents

Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone

2016

Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thu…

0301 basic medicineAdult neurogenesisMice0302 clinical medicineNeural Stem CellsCell MovementLateral VentriclesPromoter Regions GeneticCells CulturedMOUSE-BRAINReceptors NotchOligodendrocytesNeurogenesisCell DifferentiationLINEAGEAnatomyOlfactory BulbNeural stem cellCell biologyNeuroepithelial cellAdult Stem CellsOligodendrogliaDIFFERENTIATIONEnhancer Elements Geneticmedicine.anatomical_structureGene Knockdown TechniquesMolecular MedicineSPINAL-CORDStem cellSUBCELLULAR-LOCALIZATIONProtein BindingAdult stem cellOLIG2NeurogenesisSubventricular zoneBiology03 medical and health sciencesNeurosphereProx1medicineAnimalsCell LineageOLFACTORY-BULBBody PatterningHomeodomain ProteinsTumor Suppressor ProteinsCell BiologyMAMMALIAN BRAINOligodendrocyte Transcription Factor 2030104 developmental biologyNeuropoiesisPROGENITOR CELLSGene Expression Regulationnervous system030217 neurology & neurosurgeryDevelopmental BiologyStem Cells
researchProduct

Mitochondrial dynamics and metabolism in induced pluripotency.

2020

Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are control…

0301 basic medicineAdultAgingCell typeSomatic cellCellInduced Pluripotent Stem CellsBiologyBiochemistryMitochondrial Dynamics03 medical and health sciences0302 clinical medicineEndocrinologyGeneticsmedicineHumansInduced pluripotent stem cellMolecular BiologyCell DifferentiationCell BiologyCellular ReprogrammingPhenotypeCell biology030104 developmental biologymedicine.anatomical_structureEctopic expressionReprogramming030217 neurology & neurosurgeryFunction (biology)Signal TransductionExperimental gerontology
researchProduct

Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment

2018

Polycystic ovarian syndrome (PCOS) is a common reproductive disorder frequently associated with a substantial risk factor for ovarian hyperstimulation syndrome (OHSS). Dopamine receptor 2 (D2) agonists, like cabergoline (Cb2), have been used to reduce the OHSS risk. However, lutein granulosa cells (LGCs) from PCOS patients treated with Cb2 still show a deregulated dopaminergic tone (decreased D2 expression and low dopamine production) and increased vascularization compared to non-PCOS LGCs. Therefore, to understand the PCOS ovarian physiology, it is important to explore the mechanisms that underlie syndrome based on the therapeutic effects of Cb2. Here, LGCs from non-PCOS and PCOS patients …

0301 basic medicineAdultEmbryologymedicine.medical_specialtyendocrine systemCabergolineendocrine system diseasesOvarian hyperstimulation syndromeAKT103 medical and health scienceschemistry.chemical_compound0302 clinical medicineEndocrinologyInternal medicineCabergolineLuteal CellsmedicineHumansErgolines030219 obstetrics & reproductive medicineGranulosa Cellsbusiness.industryDopaminergicOvaryObstetrics and Gynecologynutritional and metabolic diseasesCell Biologymedicine.diseasefemale genital diseases and pregnancy complicationsVascular endothelial growth factorVascular endothelial growth factor A030104 developmental biologyEndocrinologyReproductive MedicinechemistryGene Expression RegulationDopamine receptorDopaminergic synapseCase-Control StudiesDopamine AgonistsFemalebusinessTranscriptomeBiomarkersmedicine.drugPolycystic Ovary Syndrome
researchProduct

Notch-1 decreased expression contributes to leptin receptor downregulation in nasal epithelium from allergic turbinates

2019

Abstract BACKGROUND: Allergic rhinitis is characterized by a remodeling of nasal epithelium. Since the Notch and TGF-β signaling pathways are known to be involved in cell differentiation and remodeling processes and leptin adipokine has already been identified as a marker for homeostasis in human bronchial and nasal epithelial cells of asthmatics, roles played by these pathways have been investigated for chronic allergic rhinitis. METHODS: The leptin/leptin receptor expression has been investigated in a study with 40 biopsies from allergic (AR, n = 18) and non-allergic (C, n = 22) inferior turbinates, using immunohistochemistry, immunofluorescence staining and RT-PCR. In addition, extracts …

0301 basic medicineAdultLeptinMalemedicine.medical_specialtyBiopsyPrimary Cell CultureAdipokineTurbinatesCell LineTransforming Growth Factor beta103 medical and health sciences0302 clinical medicineDownregulation and upregulationInternal medicinemedicineHomeostasisHumansRNA MessengerReceptor Notch1610 Medicine & healthReceptorMolecular BiologyNotch 1Leptin receptorChemistryLeptindigestive oral and skin physiologyEpithelial CellsMiddle AgedRhinitis AllergicAllergic rhinitis Epithelium Leptin NotchEpitheliumNasal Mucosa030104 developmental biologyEndocrinologymedicine.anatomical_structureGene Expression Regulation030220 oncology & carcinogenesisCase-Control StudiesMolecular MedicineReceptors LeptinFemaleSignal transductionSignal Transduction
researchProduct

Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

2018

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus(1-5). This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease(6-10). In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day(11), whereas other studies find many fewer putative new neurons(12-14). Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal …

0301 basic medicineAdultMaleAdolescentGeneral Science & TechnologyNeurogenesisPopulationHippocampusCell CountBiologyHippocampal formationHippocampusArticleSubgranular zoneFetal Development03 medical and health sciencesEpilepsyYoung Adult0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansYoung adulteducationChildPreschoolCell ProliferationAgedNeuronseducation.field_of_studyMultidisciplinaryEpilepsyDentate gyrusNeurogenesisInfantMiddle Agedmedicine.diseaseNewbornMacaca mulattaHealthy Volunteers030104 developmental biologymedicine.anatomical_structurenervous systemDentate GyrusNeurologicalFemaleNeuroscience030217 neurology & neurosurgery
researchProduct

Cell quality evaluation with gene expression analysis of spheroids (3D) and adherent (2D) adipose stem cells.

2021

Adipose stem cells (ASCs) represent a reliable source of stem cells with a widely demonstrated potential in regenerative medicine and tissue engineering applications. New recent insights suggest that three-dimensional (3D) models may closely mimic the native tissue properties; spheroids from adipose derived stem cells (SASCs) exhibit enhanced regenerative abilities compared with those of 2D models. Stem cell therapy success is determined by “cell-quality”; for this reason, the involvement of stress signals and cellular aging need to be further investigated. Here, we performed a comparative analysis of genes connected with stemness, aging, telomeric length and oxidative stress, in 3D and 2D …

0301 basic medicineAdultMaleAgingAdolescentDNA RepairCell Survivalmedicine.medical_treatmentCellCell Culture TechniquesCell- and Tissue-Based TherapyAdipose tissueBiologyRegenerative medicine03 medical and health sciencesYoung Adult0302 clinical medicineTissue engineeringSpheroids CellularGene expressionGeneticsmedicineAdipocytesCell AdhesionHumansSirtuinsCells CulturedCyclin-Dependent Kinase Inhibitor p16AgedTissue EngineeringStem CellsSpheroidRNA-Binding ProteinsTelomere HomeostasisGeneral MedicineStem-cell therapyMiddle AgedAdipose stem cellsCell biologyOxidative Stress030104 developmental biologymedicine.anatomical_structureAdipose Tissue030220 oncology & carcinogenesisFemaleStem cellStem Cell TransplantationGene
researchProduct

M1 Macrophages Activate Notch Signalling in Epithelial Cells: Relevance in Crohn's Disease

2016

Background: The Notch signalling pathway plays an essential role in mucosal regeneration, which constitutes a key goal of Crohn's disease (CD) treatment. Macrophages coordinate tissue repair and several phenotypes have been reported which differ in the expression of surface proteins, cytokines and hypoxia-inducible factors (HIFs). We analysed the role of HIFs in the expression of Notch ligands in macrophages and the relevance of this pathway in mucosal regeneration. Methods: Human monocytes and U937-derived macrophages were polarized towards the M1 and M2 phenotypes and the expression levels of HIF-1α, HIF-2α, Jagged 1 (Jag1) and delta-like 4 (Dll4) were evaluated. The effects of macrophage…

0301 basic medicineAdultMaleJAG1FarmacologiaAdolescentEnterocyteColonNotch signaling pathwayBiologymucosal healing03 medical and health sciencesYoung AdultIntestinal mucosaCrohn DiseasemedicineMacrophageHumansHES1Intestinal MucosaRecte MalaltiesReceptors NotchMacrophagesGastroenterologyEpithelial CellsGeneral MedicineMiddle AgedHypoxia-Inducible Factor 1 alpha SubunitCoculture TechniquesCell biologyCrohn's disease030104 developmental biologymedicine.anatomical_structureAparell digestiu MalaltiesCase-Control StudiesImmunologyLeukocytes MononuclearCytokinesNotch signallingEnterocyte differentiationFemaleOriginal ArticleSignal transductionCaco-2 CellsHT29 CellsBiomarkersSignal Transduction
researchProduct

Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma.

2017

Background & Aims Large extracellular vesicles, specifically AnnexinV + EpCAM + CD147 + tumour-associated microparticles (taMPs), facilitate the detection of colorectal carcinoma (CRC), non-small cell lung carcinoma (NSCLC) as well as pancreas carcinoma (PaCa). Here we assess the diagnostic value of taMPs for detection and monitoring of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Specifically, the aim of this study was to differentiate liver taMPs from other cancer taMPs, such as CRC and NSCLC. Methods Fluorescence-activated cell scanning (FACS) was applied to detect various taMP populations in patients' sera that were associated with the presence of a tumour (AnnexinV + Ep…

0301 basic medicineAdultMalePathologymedicine.medical_specialtyCirrhosisCarcinoma HepatocellularColorectal cancerAsialoglycoprotein ReceptorCholangiocarcinomaDiagnosis Differential03 medical and health scienceschemistry.chemical_compoundYoung Adult0302 clinical medicineCell-Derived MicroparticlesCell Line TumorCarcinomaBiomarkers TumorMedicineHumansLiquid biopsyAnnexin A5AgedHepatologybusiness.industryLiver NeoplasmsEpithelial cell adhesion moleculeHep G2 CellsMiddle Agedmedicine.diseaseEpithelial Cell Adhesion MoleculeTumor Burden030104 developmental biologychemistryBile Duct Neoplasms030220 oncology & carcinogenesisHepatocellular carcinomaCancer cellCancer researchBasiginFemalebusinessLiver cancerJournal of hepatology
researchProduct

Perivascular Cells in Diffuse Cutaneous Systemic Sclerosis Overexpress Activated ADAM12 and Are Involved in Myofibroblast Transdifferentiation and De…

2016

Objective.Microvascular damage is pivotal in the pathogenesis of systemic sclerosis (SSc), preceding fibrosis, and whose trigger is not still fully understood. Perivascular progenitor cells, with profibrotic activity and function, are identified by the expression of the isoform 12 of ADAM (ADAM12) and this molecule may be upregulated by transforming growth factor-β (TGF-β). The goal of this work was to evaluate whether pericytes in the skin of patients with diffuse cutaneous SSc (dcSSc) expressed ADAM12, suggesting their potential contribution to the fibrotic process, and whether TGF-β might modulate this molecule.Methods.After ethical approval, mesenchymal stem cells (MSC) and fibroblasts …

0301 basic medicineAdultMalePathologymedicine.medical_specialtyImmunologyADAM12 Protein03 medical and health sciencesYoung AdultRheumatologyFibrosisTransforming Growth Factor betamedicineImmunology and AllergyHumansProgenitor cellMyofibroblastsSkinintegumentary systembusiness.industryMedicine (all)FIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Rheumatology; Immunology; Immunology and AllergyMesenchymal stem cellTransdifferentiationMesenchymal Stem CellsMiddle Agedmedicine.diseaseFibrosisActinsUp-RegulationSettore MED/16 - Reumatologia030104 developmental biologymedicine.anatomical_structurePERICYTEFIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Immunology and Allergy; Rheumatology; Immunology; Medicine (all)SYSTEMIC SCLEROSISCell TransdifferentiationScleroderma DiffuseFemalePericyteBone marrowbusinessPericytesMyofibroblastTransforming growth factorThe Journal of rheumatology
researchProduct

Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein☆

2021

Neurologic complications of symptomatic COVID-19 are common. Brain tissues from 13 autopsies of people who died of COVID-19 were examined. Cultured endothelial and neuronal cells were incubated with and wild type mice were injected IV with different spike subunits. In situ analyses were used to detect SARS-CoV-2 proteins and the host response. In 13/13 brains from fatal COVID-19, pseudovirions (spike, envelope, and membrane proteins without viral RNA) were present in the endothelia of microvessels ranging from 0 to 14 positive cells/200× field (mean 4.3). The pseudovirions strongly co-localized with caspase-3, ACE2, IL6, TNFα, and C5b-9. The surrounding neurons demonstrated increased NMDAR2…

0301 basic medicineAdultMalePathologymedicine.medical_specialtyProtein subunitH&E stainCaspase 3Spike proteinThirstPathology and Forensic Medicine03 medical and health sciencesMice0302 clinical medicineS1 subunitmedicineAnimalsHumansAgedAged 80 and overChemistrySARS-CoV-2COVID-19Endothelial CellsGeneral MedicineOriginal ContributionMiddle AgedMolecular biologyEndothelial stem cellDisease Models AnimalProtein Subunits030104 developmental biologyMembrane protein030220 oncology & carcinogenesisMicrovesselsSpike Glycoprotein CoronavirusImmunohistochemistryRNA ViralTumor necrosis factor alphaFemaleAutopsymedicine.symptomAnnals of Diagnostic Pathology
researchProduct