Search results for " combinatorics"
showing 10 items of 296 documents
Packing colorings of subcubic outerplanar graphs
2018
Given a graph $G$ and a nondecreasing sequence $S=(s_1,\ldots,s_k)$ of positive integers, the mapping $c:V(G)\longrightarrow \{1,\ldots,k\}$ is called an $S$-packing coloring of $G$ if for any two distinct vertices $x$ and $y$ in $c^{-1}(i)$, the distance between $x$ and $y$ is greater than $s_i$. The smallest integer $k$ such that there exists a $(1,2,\ldots,k)$-packing coloring of a graph $G$ is called the packing chromatic number of $G$, denoted $\chi_{\rho}(G)$. The question of boundedness of the packing chromatic number in the class of subcubic (planar) graphs was investigated in several earlier papers; recently it was established that the invariant is unbounded in the class of all sub…
Integrability of orthogonal projections, and applications to Furstenberg sets
2022
Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…
A note on higher order Melnikov functions
2005
We present several classes of planar polynomial Hamilton systems and their polynomial perturbations leading to vanishing of the first Melnikov integral. We discuss the form of higher order Melnikov integrals. In particular, we present new examples where the second order Melnikov integral is not an Abelian integral.
Quasi-linear time computation of the abelian periods of a word
2012
Computing abelian periods in words
2011
International audience
Automorphisms of hyperelliptic GAG-codes
2009
Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.
Additivity of affine designs
2020
We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p, $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.
Tsen–Lang Theory for Cpi-fields
1995
Linear and cyclic radio k-labelings of trees
2007
International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this p…
Preface
2018
This issue of Discrete and Continuous Dynamical Systems-Series S focuses on the qualitative analysis of some concrete nonlinear problems, e.g., ordinary, partial differential equations, systems and inclusions. The ten contributions collected here give an overview on some very recent results on the existence, multiplicity and sign information of the solutions of a wide range of nonlinear differential problems involving different boundary value conditions and operators in divergence form. In our opinion, the synergy pointed out here between the classical nonlinear analysis methods, like the critical point theory, sub-super solutions methods, truncation and comparison techniques, Morse theory,…