Search results for " diffusion"
showing 10 items of 521 documents
In Vitro–In Vivo Fluctuation Spectroscopies
2010
Fluorescence correlation spectroscopy (FCS) was first developed for biophysical studies in analogy with photon scattering correlation spectroscopy. Although it is mainly devoted to the study of freely diffusing particles, FCS is actually able to discern between different kinds of motions, such as diffusion, anomalous diffusion, or drift motions. The frontier application of FCS nowadays is in medical studies both within cells and on the cell membranes, and in the investigation of single molecules in solid matrices. In this field, FCS originated also image correlation spectroscopy methods. The whole field can be unified under the name of fluorescence fluctuation spectroscopy (FFS). We present…
Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination
2020
The most widely used method to measure the transport properties of dense polymeric membranes is the time lag method in a constant volume/pressure increase instrument. Although simple and quick, this method provides only relatively superficial, averaged data of the permeability, diffusivity, and solubility of gas or vapor species in the membrane. The present manuscript discusses a more sophisticated computational method to determine the transport properties on the basis of a fit of the entire permeation curve, including the transient period. The traditional tangent method and the fitting procedure were compared for the transport of six light gases (H2, He, O2, N2, CH4, and CO2) and ethane an…
Relation between grain size and hydrogen diffusion coefficient in an industrial Pd–23% Ag alloy
1999
Abstract The diffusion mechanism of hydrogen in an industrial cold worked Pd–23% Ag alloy is investigated according to its grain size. The microstructural parameters are determined by X-ray diffraction analysis and the diffusion parameters are determined using the galvanostatic electrochemical permeation technique. Two diffusion mechanisms are displayed. For apparent grain size below 40 nm the hydrogen atoms diffuse in the grain boundaries. For grain size above 100 nm, an intergranular diffusion mechanism occurs. For intermediate grain size both mechanisms coexist. Furthermore, the diffusion in the grain boundaries is not faster than the diffusion in the bulk, as generally observed for pure…
Modulating the Electrical Properties of Organic Heterojunction Devices Based On Phthalocyanines for Ambipolar Sensors.
2020
International audience; HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites
2011
Abstract First-principles supercell calculations of oxygen vacancies in the Ba 0.5 Sr 0.5 Co 1− y Fe y O 3− δ (BSCF) perovskites are presented. The density of states is determined for different iron content and oxygen vacancy concentrations, and the characteristic differences for Co and Fe are discussed. We analyze the dependences of the defect (oxygen vacancy) formation and migration energies on the Fe content and compare the calculated properties with those of related LaCoO 3 and LaFeO 3 perovskites.
Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores
2007
Present paper deals with the use of the electrochemical impedance spectroscopy to identify different processes in the passive layer growth over steel rebar surface immersed in an alkaline media simulating the concrete pore solution. Two cases have been considered: a passive layer spontaneously grown in a high alkaline media and a passive layer assisted by the application of an anodic potential in the same media. The application of electric equivalent circuits allows distinguishing between the different mechanisms occurring in this passive layer when grows in different conditions. An electric equivalent circuit with two RC loops connected in parallel is often used for fitting the EIS diagram…
Photoconductivity and photovoltaic effect in indium selenide
1983
Transport and phototransport properties of crystalline indium monoselenide (InSe) doped with a variety of elements are reported. Measured mobilities, lifetimes, and effective diffusion lengths of photoexcited carriers are used to interpret electrical and photovoltaic properties of several different structures. These include p‐n junctions, bismuth/p‐type InSe, platinum/n‐type InSe, and indium tin oxyde (ITO)/p‐type InSe. External solar efficiencies of the best devices are between 5% and 6%. The influence on the efficiency of the various parameters is evaluated, and ways of improvement are discussed.
INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES
2002
In this paper we compare two different approaches for the calculation of the enhancement factor Wi , based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the “dilute solution” or “lattice gas” models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new “enhancement factor” for the ion transport has been defined and its relations to…
Localized Liquid Secretion from a Photopatterned Liquid-Crystal Polymer Skin
2020
Liquid-releasing artificial skins are made from films made of a smectic liquid-crystal polymer network (LCN) photopolymerized in the presence of a photoactive azobenzene chromophore and a liquid-crystal porogen. The nonreactive porogen phase separates during the polymerization process, and the polymer forms a spongy polymer network filled with liquid. The liquid is excreted from the film when exposed to UV light upon conversion of trans-azobenzene to its cis isomer. Here, localized liquid secretion at preset positions at the polymer film is described. The design principle is based on creating a hybrid molecular architecture with both smectic and nonordered isotropic alignments in a continuo…
PET/PEN Blends of Industrial Interest as Barrier Materials. Part I. Many-Scale Molecular Modeling of PET/PEN Blends
2006
Mesoscale molecular simulations, based on parameters obtained through atomistic molecular dynamics and Monte Carlo calculations, have been used for modeling and predicting the behavior of PET/PEN blends. Different simulations have been performed in order to study and compare pure homopolymer blends with blends characterized by the presence of PET/PEN block copolymers acting as compatibilizer. A many-scale molecular modeling strategy was devised to evaluate PET/PEN blend characteristics, simulate phase segregation in pure PET/PEN blends, and demonstrate the improvement of miscibility due to the presence of the transesterification reaction products. The behavior of distribution densities and …