Search results for " functional analysis"
showing 10 items of 184 documents
Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces
2015
Submitted by Alexandre Almeida (jaralmeida@ua.pt) on 2015-11-12T11:41:07Z No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Approved for entry into archive by Bella Nolasco(bellanolasco@ua.pt) on 2015-11-17T12:18:41Z (GMT) No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Made available in DSpace on 2015-11-17T12:18:41Z (GMT). No. of bitstreams: 1 RieszWolff_RIA.pdf: 159825 bytes, checksum: d99abdf3c874f47195619a31ff5c12c7 (MD5) Previous issue date: 2015-04
Analytic Bergman operators in the semiclassical limit
2018
Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.
A density problem for Sobolev spaces on Gromov hyperbolic domains
2017
We prove that for a bounded domain $\Omega\subset \mathbb R^n$ which is Gromov hyperbolic with respect to the quasihyperbolic metric, especially when $\Omega$ is a finitely connected planar domain, the Sobolev space $W^{1,\,\infty}(\Omega)$ is dense in $W^{1,\,p}(\Omega)$ for any $1\le p<\infty$. Moreover if $\Omega$ is also Jordan or quasiconvex, then $C^{\infty}(\mathbb R^n)$ is dense in $W^{1,\,p}(\Omega)$ for $1\le p<\infty$.
Solving fractional Schroedinger-type spectral problems: Cauchy oscillator and Cauchy well
2014
This paper is a direct offspring of Ref. [J. Math. Phys. 54, 072103, (2013)] where basic tenets of the nonlocally induced random and quantum dynamics were analyzed. A number of mentions was maid with respect to various inconsistencies and faulty statements omnipresent in the literature devoted to so-called fractional quantum mechanics spectral problems. Presently, we give a decisive computer-assisted proof, for an exemplary finite and ultimately infinite Cauchy well problem, that spectral solutions proposed so far were plainly wrong. As a constructive input, we provide an explicit spectral solution of the finite Cauchy well. The infinite well emerges as a limiting case in a sequence of deep…
Quasi-Continuous Vector Fields on RCD Spaces
2021
In the existing language for tensor calculus on RCD spaces, tensor fields are only defined $\mathfrak {m}$ -a.e.. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.
A quasiconformal composition problem for the Q-spaces
2017
Given a quasiconformal mapping $f:\mathbb R^n\to\mathbb R^n$ with $n\ge2$, we show that (un-)boundedness of the composition operator ${\bf C}_f$ on the spaces $Q_{\alpha}(\mathbb R^n)$ depends on the index $\alpha$ and the degeneracy set of the Jacobian $J_f$. We establish sharp results in terms of the index $\alpha$ and the local/global self-similar Minkowski dimension of the degeneracy set of $J_f$. This gives a solution to [Problem 8.4, 3] and also reveals a completely new phenomenon, which is totally different from the known results for Sobolev, BMO, Triebel-Lizorkin and Besov spaces. Consequently, Tukia-V\"ais\"al\"a's quasiconformal extension $f:\mathbb R^n\to\mathbb R^n$ of an arbitr…
Classification criteria for regular trees
2021
Esitämme säännöllisten puiden parabolisuudelle yhtäpitäviä ehtoja. We give characterizations for the parabolicity of regular trees. peerReviewed
Riesz transform and vertical oscillation in the Heisenberg group
2023
We study the $L^{2}$-boundedness of the $3$-dimensional (Heisenberg) Riesz transform on intrinsic Lipschitz graphs in the first Heisenberg group $\mathbb{H}$. Inspired by the notion of vertical perimeter, recently defined and studied by Lafforgue, Naor, and Young, we first introduce new scale and translation invariant coefficients $\operatorname{osc}_{\Omega}(B(q,r))$. These coefficients quantify the vertical oscillation of a domain $\Omega \subset \mathbb{H}$ around a point $q \in \partial \Omega$, at scale $r > 0$. We then proceed to show that if $\Omega$ is a domain bounded by an intrinsic Lipschitz graph $\Gamma$, and $$\int_{0}^{\infty} \operatorname{osc}_{\Omega}(B(q,r)) \, \frac{dr}{…
Sesquilinear forms associated to sequences on Hilbert spaces
2019
The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of sesquilinear forms, such as Kato's theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.
Design for invention: a framework for identifying emerging design–prior art conflict
2018
The increasing complexity of patented mechanical designs means that their novelty and inventive steps increasingly rely on interacting geometric features and how they contribute to device functions. These features and interactions are normally incorporated in patents through clear patent claims. However, patents can be difficult to interpret and understand for designers due to their legal terminologies. This suggests there is a need for greater awareness of relevant prior art amongst designers in terms of avoiding potential conflict. This paper presents a framework that helps designers obtain insight on relevant prior art and enables emerging design–prior art comparison. The framework mainl…