Search results for " material"
showing 10 items of 17428 documents
2018
CrN thin films with an N/Cr ratio of 95% were deposited by reactive magnetron sputtering onto (0 0 0 1) sapphire substrates. X-ray diffraction and pole figure texture analysis show CrN (1 1 1) epitaxial growth in a twin domain fashion. By changing the nitrogen versus argon gas flow mixture and the deposition temperature, thin films with different surface morphologies ranging from grainy rough textures to flat and smooth films were prepared. These parameters can also affect the CrN x system, with the film compound changing between semiconducting CrN and metallic Cr2N through the regulation of the nitrogen content of the gas flow and the deposition temperature at a constant deposition pressur…
The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges
2017
Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…
Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers
2019
We investigate the magnetic domain structures and the perpendicular magnetic anisotropy (PMA) arising in CoFeB films interfaced with selected heavy metal (HM) layers with large spin Hall angles in HM/CoFeB/MgO (HM = W, Pt, Pd, W x Ta1−x ) stacks as a function of CoFeB thickness and composition for both as-deposited and annealed materials stacks. The coercivity and the anisotropy fields of annealed material stacks are higher than for the as-deposited stacks due to crystallisation of the ferromagnetic layer. Generally a critical thickness of MgO > 1 nm provides adequate oxide formation at the top interface as a requirement for the generation of PMA. We demonstrate that in stacks with Pt as th…
Quantitative analysis of magnetization reversal in Ni thin films on unpoled and poled (0 1 1) [PbMg1/3Nb2/3O3]0.68–[PbTiO3]0.32piezoelectric substrat…
2016
The field angle dependence of the magnetization reversal in 20 nm thick polycrystalline Ni films grown on piezoelectric (0 1 1) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates is analysed quantitatively to study the magnetic anisotropy induced in the film by poling the piezosubstrate. While the PMN-PT is in the unpoled state, the magnetization reversal is almost isotropic as expected from the polycrystalline nature of the film and corresponding to an orientation ratio (OR) of 1.2. The orientation ratio is obtained by fitting the angular dependence of normalized remanent magnetization to an adapted Stoner-Wohlfarth relation. Upon poling the piezosubstrate, a strong uniaxial anisotr…
Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study
2019
Abstract Molecular dynamic simulation was used to study mechanism of self-propagating waves of explosive crystallization (devitrification) in the CuTi metallic glass. Processes in thin rectangular samples composed of one to two million atoms were simulated and compared with experimental data. It was shown that the nucleation of primary crystalline clusters occurs homogeneously due to spontaneous fluctuations of atomic structure; the clusters not
The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films
2017
Abstract Thin films of bismuth sulfide (Bi 2 S 3 ) have been electrochemically deposited on indium–doped tin oxide substrates from aqueous solutions of Bi(NO 3 ) 3 , ethylene diamine tetraacetic acid (EDTA) and Na 2 S 2 O 3 . The structural properties of the films were characterized using X–ray diffraction and high–resolution transmission electron microscopy analyses. The film crystallizes in an orthorhombic structure of Bi 2 S 3 along with metallic bismuth. Thermal annealing of the prepared film in sulfur atmosphere improves its crystallinity and cohesion. The band gap values of the deposited film before and after annealing at 400 °C were found to be 1.28 and 1.33 eV, respectively.
Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers
2014
Abstract Multilayered structures with a 40 nm period composed of titanium and two different titanium oxides, TiO and TiO 2 , were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. These multilayers were sputtered onto Al 2 O 3 sapphire to avoid substrate compound diffusion during flash annealing (ranging from 350 °C to 550 °C). Structure and composition of these periodic TiO 2 /TiO/Ti stacks were investigated by X-ray diffraction, X-ray photoemission spectroscopy and transmission electronic microscopy techniques. Two crystalline phases α-Ti and fcc-TiO were identified in the metallic-rich sub-layers whereas the oxygen-rich ones were composed of a mixture…
Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapo…
2019
Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…
MOCVD growth of CdO very thin films: Problems and ways of solution
2016
Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…
The challenge in realizing an exchange coupled BiFeO3-double perovskite bilayer
2020
Abstract In this work we propose a device design for efficient voltage control of magnetism. The magnetization of a ferrimagnetic double perovskite may be manipulated by an exchange coupled layer of multiferroic BiFeO3. Bilayers of Barium doped BiFeO3 and ferrimagnetic double perovskite Sr2FeMoO6 have been prepared by pulsed laser deposition motivated by the possibility of strong interlayer exchange coupling. While single layers of each material show high quality we observe that in both stacking orders the first layer decomposes during the deposition of the second layer. The reason for the decomposition are strongly differing growth conditions for BiFeO3 and Sr2FeMoO6. This means that the g…