Search results for " nanostructure"
showing 10 items of 175 documents
Optical and morphological properties of infrared emitting functionalized silica nanoparticles
2013
Abstract The loading process of functionalized silica nanoparticles was investigated in order to obtain nanoparticles having functional groups on their surface and Near-Infrared (NIR) emission properties. The NIR emission induced by O 2 loading was studied in silica nanoparticles, produced by pyrogenic and microemulsion methods, with size ranging from 20 to 120 nm. Loading was carried out by thermal treatments in O 2 atmosphere up to 400 °C and 90 bar. The effects of the thermal treatments on the NIR emission and on the structural properties were studied by luminescence and Raman techniques, whereas the morphological features were investigated by Transmission Electron Microscopy and Atomic …
A photoemission study of molybdenum hexacarbonyl adsorption and decomposition on TiO2(110) surface.
2007
International audience; The adsorption and decomposition of molybdenum hexacarbonyl on (110) TiO2 surfaces were studied using both core levels and valence band photoemission spectroscopies. It was found that after an adsorption at 140 K, when going back to room temperature, only a small part of molybdenum compounds, previously present at low temperature, remained on the TiO2 surface. This indicates that the desorption temperature on such a surface is lower than the decomposition one. The use of photon irradiation to decompose the hexacarbonyl molecule was also studied. It was shown that during such a decomposition molecular fragments were chemisorbed on the surface allowing a higher amount …
Determining Magnetite/Maghemite Composition and Core–Shell Nanostructure from Magnetization Curve for Iron Oxide Nanoparticles
2018
Iron oxide magnetic nanoparticles produced by chemical synthesis are usually composed of both magnetite and maghemite phases. Information about the phase composition is typically obtained using Mos...
Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides
2008
A near-field scanning optical microscope (NSOM) is used to perform structural and optical characterization of the surface layer after Zn diffusion in a channel waveguide fabricated on lithium niobate. A theoretical approach has been developed in order to extract refractive index contrast from NSOM optical transmission measurements (illumination configuration). As a result, different solid phases present on the sample surface can be identified, such as ZnO and ZnNb2O6. They appear like submicrometric crystallites aligned along the domain wall direction, whose origin can be ascribed to some strain relaxation mechanism during the annealing process after Zn diffusion. Jose.Canet-Ferrer@uv.es
Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions
2016
In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area exposed to the electrolyte, leading to an outstanding enhancement of its photoelectrochemical activity. Obtained results show that the size of nanostructures and the percentage of electrode surface covered by…
Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires
2017
The present research was supported by the Latvian National Research Program IMIS2 . Authors are grateful for Dr. Robert Kalendarev and Martins Zubkins for assistance in magnetron sputtering, Dr. Krisjanis Smits for TEM measurements, Dr. Roberts Zabels for AFM measurements and Reinis Ignatans for XRD measurements.
Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates
2010
Abstract ZnO micro and nanostructures in the form of tripods, grains, arrows and wires have been grown at temperatures as low as 500–300 ∘ C by a vapour transport method without catalysis and using a well selected value of the carrier gas flow. A transition state between grains and nanowires is reported being characterized by arrow-like structures which are constituted by a pyramidal head and a tail that is growing from the basal plane of the head. In order to understand the effect of growth conditions on the morphology of micro and nanostructures, an analysis of temperature and species concentration conditions has been carried out. In addition two different kinds of substrates have been u…
Template Electrochemical Growth and Properties of Mo Oxide Nanostructures
2014
This work is aimed at studying the growing process of nanostructures electrodeposited from molybdate aqueous solutions at different pH values into pores of polycarbonate membrane templates. The challenging issue was the opportunity to investigate a rather complex deposition process in a confined ambient, where electrochemical conditions are quite different from those usually established for deposition on a flat substrate. Nanostructures were grown from a bath containing Mo7O246– (NH4)6Mo7O24·4H2O) at different concentrations (50–100 g/L), at a constant cathodic current density of 2 mA/cm2 (electrodeposition area ∼8 cm2). Nanostructured deposit was characterized by XRD, EDS, Raman, XPS, and …
Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures
2019
In this paper, the effect of femtosecond laser nanotexturing of surfaces of Ti6Al4V and Zr implants on their biological compatibility is presented and discussed. Highly regular and homogeneous nanostructures with sub-micrometer period were imprinted on implant surfaces. Surfaces were morphologically and chemically investigated by SEM and XPS. HDFa cell lines were used for toxicity and cell viability tests, and subcutaneous implantation was applied to characterize tissue response. HDFa proliferation and in vivo experiments evidenced the strong influence of the surface topography compared to the effect of the surface elemental composition (metal or alloy). The effect of protein adsorption fro…
Electrochemical formation of novel TiO2-ZnO hybrid nanostructures for photoelectrochemical water splitting applications
2020
[EN] In this study, hybrid ZnO-TiO2 nanostructures have been synthesised by means of a simple electrochemical anodisation of titanium and subsequently ZnO electrodeposition. The influence of Zn(NO3)(2) concentration and temperature during the electrodeposition process was evaluated. Different techniques were used to analyse the synthesised nanostructures, notably Field Emission Scanning Electron Microscopy (FE-SEM) with Energy-dispersive X-ray spectroscopy (EDX) and Confocal Microscopy with Raman spectroscopy coupled with an Atomic Force Microscope. Photoelectrochemical water splitting tests were also performed at the hybrid nanostructures. According to the results, the photoelectrochemical…