Search results for " partial D"
showing 10 items of 169 documents
Partial differential equations and quasiregular mappings
1992
Mauro Picone, Sandro Faedo, and the numerical solution of partial differential equations in Italy (1928-1953)
2013
In this paper we revisit the pioneering work on the numerical analysis of partial differential equations (PDEs) by two Italian mathematicians, Mauro Picone (1885-1977) and Sandro Faedo (1913-2001). We argue that while the development of constructive methods for the solution of PDEs was central to Picone's vision of applied mathematics, his own work in this area had relatively little direct influence on the emerging field of modern numerical analysis. We contrast this with Picone's influence through his students and collaborators, in particular on the work of Faedo which, while not the result of immediate applied concerns, turned out to be of lasting importance for the numerical analysis of …
Solutions of elliptic equations with a level surface parallel to the boundary: stability of the radial configuration
2016
A positive solution of a homogeneous Dirichlet boundary value problem or initial-value problems for certain elliptic or parabolic equations must be radially symmetric and monotone in the radial direction if just one of its level surfaces is parallel to the boundary of the domain. Here, for the elliptic case, we prove the stability counterpart of that result. We show that if the solution is almost constant on a surface at a fixed distance from the boundary, then the domain is almost radially symmetric, in the sense that is contained in and contains two concentric balls $${B_{{r_e}}}$$ and $${B_{{r_i}}}$$ , with the difference r e -r i (linearly) controlled by a suitable norm of the deviation…
Superharmonic functions are locally renormalized solutions
2011
Abstract We show that different notions of solutions to measure data problems involving p-Laplace type operators and nonnegative source measures are locally essentially equivalent. As an application we characterize singular solutions of multidimensional Riccati type partial differential equations.
Scheduled Relaxation Jacobi method: improvements and applications
2016
Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficien…
Existence and Uniqueness Results for Quasi-linear Elliptic and Parabolic Equations with Nonlinear Boundary Conditions
2006
We study the questions of existence and uniqueness of weak and entropy solutions for equations of type -div a(x, Du)+γ(u) ∋ φ, posed in an open bounded subset Ω of ℝN, with nonlinear boundary conditions of the form a(x, Du)·η+β(u) ∋ ψ. The nonlinear elliptic operator div a(x, Du) is modeled on the p-Laplacian operator Δp(u) = div (|Du|p−2Du), with p > 1, γ and β are maximal monotone graphs in ℝ2 such that 0 ∈ γ(0) and 0 ∈ β(0), and the data φ ∈ L1 (Ω) and ψ ∈ L1 (∂Ω). We also study existence and uniqueness of weak solutions for a general degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions. Particular instances of this problem appear in various phenomena with c…
Parabolic equations with natural growth approximated by nonlocal equations
2017
In this paper we study several aspects related with solutions of nonlocal problems whose prototype is $$ u_t =\displaystyle \int_{\mathbb{R}^N} J(x-y) \big( u(y,t) -u(x,t) \big) \mathcal G\big( u(y,t) -u(x,t) \big) dy \qquad \mbox{ in } \, \Omega \times (0,T)\,, $$ being $ u (x,t)=0 \mbox{ in } (\mathbb{R}^N\setminus \Omega )\times (0,T)\,$ and $ u(x,0)=u_0 (x) \mbox{ in } \Omega$. We take, as the most important instance, $\mathcal G (s) \sim 1+ \frac{\mu}{2} \frac{s}{1+\mu^2 s^2 }$ with $\mu\in \mathbb{R}$ as well as $u_0 \in L^1 (\Omega)$, $J$ is a smooth symmetric function with compact support and $\Omega$ is either a bounded smooth subset of $\mathbb{R}^N$, with nonlocal Dirichlet bound…
Numerical study of a multiscale expansion of the Korteweg de Vries equation and Painlev\'e-II equation
2007
The Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion of order $\e^2$, $\e\ll 1$, is characterized by the appearance of a zone of rapid modulated oscillations. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave-number and frequency are not constant but evolve according to the Whitham equations. Whereas the difference between the KdV and the asymptotic solution decreases as $\epsilon$ in the interior of the Whitham oscillatory zone, it is known to be only of order $\epsilon^{1/3}$ near the leading edge of this zone. To obtain a more accurate description near the leading edge of the oscillatory zone we present a…
Indicators of Errors for Approximate Solutions of Differential Equations
2014
Error indicators play an important role in mesh-adaptive numerical algorithms, which currently dominate in mathematical and numerical modeling of various models in physics, chemistry, biology, economics, and other sciences. Their goal is to present a comparative measure of errors related to different parts of the computational domain, which could suggest a reasonable way of improving the finite dimensional space used to compute the approximate solution. An “ideal” error indicator must possess several properties: efficiency, computability, and universality. In other words, it must correctly reproduce the distribution of errors, be indeed computable, and be applicable to a wide set of approxi…
Stochastic Analysis of a Nonlocal Fractional Viscoelastic Bar Forced by Gaussian White Noise
2017
Recently, a displacement-based nonlocal bar model has been developed. The model is based on the assumption that nonlocal forces can be modeled as viscoelastic (VE) long-range interactions mutually exerted by nonadjacent bar segments due to their relative motion; the classical local stress resultants are also present in the model. A finite element (FE) formulation with closed-form expressions of the elastic and viscoelastic matrices has also been obtained. Specifically, Caputo's fractional derivative has been used in order to model viscoelastic long-range interaction. The static and quasi-static response has been already investigated. This work investigates the stochastic response of the non…