Search results for " superconductivity"
showing 10 items of 319 documents
Supervised Quantum Learning without Measurements
2017
We propose a quantum machine learning algorithm for efficiently solving a class of problems encoded in quantum controlled unitary operations. The central physical mechanism of the protocol is the iteration of a quantum time-delayed equation that introduces feedback in the dynamics and eliminates the necessity of intermediate measurements. The performance of the quantum algorithm is analyzed by comparing the results obtained in numerical simulations with the outcome of classical machine learning methods for the same problem. The use of time-delayed equations enhances the toolbox of the field of quantum machine learning, which may enable unprecedented applications in quantum technologies. The…
Strongly interacting Fermi gases with density imbalance
2005
We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.
A minimal tight-binding model for the quasi-one-dimensional superconductor K2Cr3As3
2019
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band struc…
Pairing gap and in-gap excitations in trapped fermionic superfluids
2004
We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of RF(or laser)-excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, i.e. in-gap excitations. The results support the conclusion that a superfluid, where pairing is a many-body effect, was observed in recent experiments on RF spectroscopy of the pairing gap.
Superconducting tunnel junction fabrication on three-dimensional topography via direct laser writing
2020
Superconducting junctions are widely used in multitude of applications ranging from quantum information science and sensing to solid-state cooling. Traditionally, such devices must be fabricated on flat substrates using standard lithographic techniques. In this study, we demonstrate a highly versatile method that allows for superconducting junctions to be fabricated on a more complex topography. It is based on maskless direct laser writing (DLW) two-photon lithography, which allows writing in 3D space. We show that high-quality normal metal-insulator-superconductor (NIS) tunnel junctions can be fabricated on top of a 20 $\mu$m tall three-dimensional topography. Combined with more advanced r…
Supercurrent Induced Charge-Spin Conversion in Spin-Split Superconductors
2017
We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin- splitting field in the presence of co-flowing supercurrent. In such a system, the nonequilibrium state is characterized by charge, spin, energy and spin energy modes. Here we show that in the presence of both spin splitting and supercurrent, all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, that in the presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it can be detected by studyin…
Unveiling signatures of topological phases in open kitaev chains and ladders
2019
In this work, the general problem of the characterization of the topological phase of an open quantum system is addressed. In particular, we study the topological properties of Kitaev chains and ladders under the perturbing effect of a current flux injected into the system using an external normal lead and derived from it via a superconducting electrode. After discussing the topological phase diagram of the isolated systems, using a scattering technique within the Bogoliubov de Gennes formulation, we analyze the differential conductance properties of these topological devices as a function of all relevant model parameters. The relevant problem of implementing local spectroscopic measurement…
Chiral charge order in the superconductor 2H-TaS(2)
2011
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM
Spin Hanle effect in mesoscopic superconductors
2014
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Intergrain Effects in the AC Susceptibility of Polycrystalline LaFeAsO_{0.94}F_{0.06}
2010
The AC susceptibility, chi, at zero DC magnetic field of a polycrystalline sample of LaFeAsO_{0.94}F_{0.06} (Tc ≈ 24 K) has been investigated as a function of the temperature, the amplitude of the AC magnetic field (in the range Hac = 0.003 Oe - 4 Oe) and the frequency (in the range f = 10 kHz - 100 kHz). The chi(T) curve exhibits the typical two-step transition arising from the combined response of superconducting grains and intergranular weak-coupled medium. The intergranular part of chi strongly depends on both the amplitude and the frequency of the AC driving field, from few Kelvin below Tc down to T = 4.2 K. Our results show that, in the investigated sample, the intergrain critical cur…